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Prefrontal Cortex Activity during Flexible Categorization
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Items are categorized differently depending on the behavioral context. For instance, a lion can be categorized as an African animal or a
type of cat. We recorded lateral prefrontal cortex (PFC) neural activity while monkeys switched between categorizing the same image set
along two different category schemes with orthogonal boundaries. We found that each category scheme was largely represented by
independent PFC neuronal populations and that activity reflecting a category distinction was weaker, but not absent, when that category
was irrelevant. We suggest that the PFC represents competing category representations independently to reduce interference between
them.

Introduction
Perceptual categorization is the ability to detect and store the
relevant commonalties across items while ignoring their irrele-
vant differences. This is critical to normal thought because it
allows us to recognize new items or old items in a new light.
Impairment in visual category learning is found in a range of
cognitive disorders such as autism (Hill, 2004) and schizophrenia
(Kéri et al., 1999; Tan et al., 2006; Weickert et al., 2009).

Neural correlates of visual categories have been found in the
temporal, parietal, and frontal cortices (Vogels, 1999; Freedman
et al., 2001, 2002, 2003; Freedman and Assad, 2006; DeGutis and
D’Esposito, 2007; Diester and Nieder, 2007). Their neurons often
show the hallmarks of perceptual categorization: greater differ-
ences in activity in response to stimuli from different categories
than in response to stimuli from the same category, regardless of
their exact physical appearance. So far this has been demon-
strated by training animals on static, fixed categories (e.g., a given
stimulus was always a “dog” or a “cat”). This was a necessary first
step in establishing the basic neural phenomenon and its distri-
bution in higher-level cortex. However, one of the remarkable
features of primate cognition is our great flexibility. We can clas-
sify the same object into different categories depending on the
context of our current goal. For example, airplanes can be things
that fly (like birds) or a mode of transportation (like trains). The
nature of and substrate for this dynamic flexibility are not yet
fully understood.

We investigated flexible categorization in the prefrontal cor-
tex (PFC). The PFC is known to have neural correlates of shape-
based categorization (Freedman et al., 2001, 2002, 2003; DeGutis

and D’Esposito, 2007; Diester and Nieder, 2007) and is critical for
cognitive flexibility (Goldman-Rakic, 1987; Fuster, 2000; Miller,
2000; Miller and Cohen, 2001; Poldrack and Rodriguez, 2004).
We used the computer-generated cat-and-dog morph stimuli
used in our previous studies (Freedman et al., 2001, 2002, 2003).
A three-dimensional morphing system (Shelton, 2000) produced
parametric blends (morphs) of four prototypes (two cat and two
dog prototypes) (see Fig. 1A). The monkeys learned to categorize
this image set using two orthogonal category schemes. One
scheme divided the image set into cat-like and dog-like morphs
(see Fig. 1A, left panel) and the other scheme grouped together
different pairs of cat and dog prototypes (Fig. 1A, right panel).
Our monkeys flexibly switched between these category schemes
while we recorded neural activity from multiple electrodes in the
PFC, targeting the same ventrolateral region as our prior work
(Freedman et al., 2001, 2002, 2003).

Materials and Methods
Two Macaca mulatta (8 –10 kg) were handled in accordance with Na-
tional Institutes of Health guidelines and the Massachusetts Institute of
Technology Committee on Animal Care. Eye movements were moni-
tored using an infrared eye tracking system (Iscan) at a sampling rate of
240 Hz.

Stimuli. A large number of morph images were generated by varying
the composition percentage of the two cat and two dog prototype images
(Fig. 1A), using the vector differences between corresponding points (for
more information, see Shelton, 2000). Morphs were linear combinations
of these vectors added to the prototype. Stimuli from different categories
differed along multiple features and were smoothly morphed (i.e., with-
out sudden appearance of any feature). The stimulus space was divided
into two different category schemes where the boundary lines were or-
thogonal. Each category scheme (Fig. 1A, scheme A in left panel and
scheme B in right panel) designated two categories. An image was con-
sidered member of a category if it contained more than a 50% contribu-
tion from a prototype in that category. During training of both category
schemes, the image set consisted of thousands of images generated from
combinations of the four prototypes. For the recording sessions, we gen-
erated 28 images from six levels of combinations of each pair of proto-
types (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) to be used as the
sample images. The images of the six morph lines that span between the
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prototypes are shown in Figure 1A. All images
were 4.2 degrees in diameter and had identical
color, shading, orientation, and scale.

Task. The monkeys performed a delayed
match-to-category task (Fig. 1 B). Monkeys
initiated the trial by holding a lever and acquir-
ing and maintaining fixation for 1000 ms. The
color of the dot in the first 500 ms instructed
which category scheme (blue for scheme A or
red for scheme B) should be followed on that
trial. For the last 500 ms, the dot was white in
color. A sample image (chosen from the 28 de-
scribed above) was presented for 600 ms, fol-
lowed by a 1000 ms memory delay. Next, a test
image was presented. If it matched the category
of the sample image, monkeys released a lever
to receive a juice reward. If it was a category
nonmatch, they were to continue holding the
lever through a second delay, which was fol-
lowed by a match image requiring a response.
To ensure that monkeys did not simply mem-
orize specific stimulus–stimulus–response pat-
terns, each day the test images for each category
were randomly chosen from a pool of 150
morphs that were at least 70% of a prototype.
Category scheme A/B and match/nonmatch
trials were randomly interleaved and occurred
at similar frequency. Monkeys maintained fix-
ation throughout within a �2 degree window
that centered the stimuli on the fovea.

Both animals were first trained on category
scheme A until their performance was 80% or
better. This took �6 months. Then the animals
trained on category scheme B exclusively until
they attained the same performance criteria;
this took �4 months. Only then were the two
category schemes presented within the same
session. At first, blocks of 20 trials of each
scheme were used. Over the subsequent �4
weeks, the number of trials in each block was
reduced to one, at which point schemes could
be randomly chosen.

Recording. Either 8 or 16 acute epoxy-coated
tungsten electrodes (FHC) per recording ses-
sion were lowered into the brain. Custom-
made screw-driven microdrives were used to
lower the electrodes, with each drive control-
ling two electrodes, through a plastic grid with
1 mm spacing (Freedman et al., 2001, 2002,
2003). Recording chambers were stereotaxi-
cally placed using MRI images and anatomical
atlas (Paxinos et al., 2000) over the PFC (prin-
cipal sulcus and anterior arcuate sulcus or areas
45, 46, and 12). Isolated neurons were not prescreened for task-related
activity such as stimulus or category sensitivity. Rather, we recorded
activity from every well isolated neuron we encountered. We were
able to isolate an average of one or two neurons per electrode. The
activity of 536 lateral prefrontal cortex neurons was recorded (333
from monkey O in 38 sessions and 203 from monkey L in 40 sessions).
Reconstructions of the recording location are shown in Figure 1C for
both monkeys. Note that the MRI images for monkey L were only
available as printouts, which was sufficient for well placement, but we
were unable to generate a three-dimensional reconstruction. We in-
stead adjusted the reconstruction of monkey O to fit the measure-
ments of monkey L. Waveforms were digitized and then stored for
off-line sorting. Principal components analysis was used to sort the
waveforms into individual neurons (Plexon).

Data analysis. Neuronal activity was averaged over four time epochs:
baseline (400 ms before the sample image presentation), sample presen-

tation (100 – 600 ms after sample onset), memory delay (300 –1100 ms
after sample offset), and test image presentation [100 ms after test onset
to 2 SDs before each monkey’s daily average reaction time (RT)]. The test
image presentation epoch was chosen to avoid any influence of the be-
havioral response (monkey O: mean RT � 284 ms, mean test interval �
173 ms; monkey L: mean RT � 350 ms, mean test interval � 232 ms).

Neural activity was normalized first by subtracting the minimum ac-
tivity during that epoch from the measured activity and then dividing by
the difference of the maximum and minimum firing rates. This method
was chosen to maximize the dynamic range of each neuron in each time
interval and to be consistent with previous studies (Freedman et al., 2001,
2002, 2003). The findings were not affected if activity was not normalized
or normalized to baseline activity. The average firing rate traces have
been smoothed with a Savitzky–Golay filter (also called least-squares
smoothing filters) with a weighting vector of 51 ms. We used standard
statistical methods such as t tests and ANOVAs.
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Figure 1. Stimuli and behavioral task. A, An image stimulus set was generated by blending prototypes along six morph lines.
Monkeys were taught to group the same images under two different category schemes. B, Schematic diagram of the delayed
match-to-category task. Each trial began with the monkeys fixating on a dot and holding a lever. The dot was briefly a color that
cued the monkey as to which category scheme was relevant. The dot switched to white and a sample image appeared for 600 ms.
Following a brief 1 s delay, a test image was presented. If the test image and sample image were of the same category, monkeys
released a lever. Otherwise, monkeys continued to hold the lever through a delay until a matching image was displayed.
C, Anatomical locations of recording sites of category selective neurons in both monkeys. A, Anterior; P, posterior; D, dorsal; V, ventral.
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A category index was generated to assess the strength of the category
selectivity. We calculated each neuron’s difference in average activity in
response to pairs of images along the morph lines that crossed the cate-
gory boundary (Freedman et al., 2001, 2002). The within-category dif-
ference (WCD) was defined by computing the absolute difference
between the 100% and 80% morphs and the 80% and 60% morphs for
both categories and averaging these values. The between-category differ-
ence (BCD) was computed by averaging the across-boundary differences
between the 60% of one category and 60% of the other category. The
distance between the images was identical at 20% for both the WCD and
BCD. The index was calculated by dividing the difference between BCDs
and WCDs by their sum and could range between �1 and 1. The more
positive the index, the larger the difference in responses to images that are
between categories as compared with within categories. The category
index was calculated for the sample presentation and memory delay in-
tervals independently.

To capture category effects in the activity of the population of neurons,
we calculated correlation coefficients. Arranging the correlation coeffi-
cients into a matrix can reveal patterns of stimulus and category selectiv-
ity (Hegdé and Van Essen, 2006; Freedman and Miller, 2008). For each
image, we used average activity of each neuron during both the sample
and memory delay intervals (considered independently) and calculated
correlations between each neuron’s activity in response to a given image
and every possible pairing of each other image. The coefficients reflect the
degree of similarity of activity in response to the different images. If the
activity level was similar to the two images, the correlation would be
higher than if activity was different. Permutation tests (Manly, 1997)
were used to assess whether average coefficient values were greater
than those observed by chance (null hypothesis) or whether differ-
ences between values were significant. The permutation tests (re-
peated 5000 times) provided a null distribution with which the
calculated values could be compared. For each permutation, the cat-
egory assignments of the images were randomized and the correlation
coefficients and subsequent average value were calculated. Signifi-
cance ( p value) was calculated by taking the number of calculated
average values that were greater than the observed values and dividing
by the total number of permutations.

The correlation coefficient data were used as the input for the multi-
dimensional scaling (MDS) analysis. MDS plots the data, in this case each
image, so that the distance between data points represents the similarity
of the population of neural responses to the images. MDS was calculated
using a nonlinear dimensionality reduction method (Tenenbaum et al.,
2000) that aims to preserve any intrinsic geometry in the data (neighbor-
hood function, K � 14). The average distances between images within
each category and between categories were calculated.

Results
Behavior
Both monkeys were able to flexibly categorize the images at a high
level of proficiency. Monkey O (Fig. 2A) and monkey L (Fig. 2B)
were equally good (�80% correct) at categorizing images under
both category schemes A and B. Monkey L’s overall performance
(mean � SD) was 87 � 19% correct which was slightly, but
significantly ( p � 0.01), worse than monkey O who performed at
89 � 17% correct. Both monkeys correctly categorized images at
�80% correct even when the images were close to the boundary
lines (i.e., the 60% morphs). In their combined performance (Fig.
2C), there was no significant differences in performance between
the two category schemes at each morph level (t test, p � 0.01).

General neural properties
The main task epochs of interest were the sample presentation
and memory delay intervals. That was when the monkeys had to
categorize the sample image and hold that information in short-
term memory. The majority of neurons were responsive in that
they showed a significant change in neural activity relative to
their baseline firing rate during either the sample or memory

delay epochs (425 of 536 or 79.3%; paired t test, p � 0.05, Bon-
ferroni corrected).

Our first step was to identify a population of neurons for
further analysis by determining which neurons could potentially
show category effects. To include the greatest number of poten-
tial category neurons, we compared, for each category scheme,
the average neural activity in response to the 14 images of one
category to the 14 images of the other category for that scheme
(Fig. 1A). Many neurons (�38.4% or 206 of 536, 66 during the
sample presentation, 92 during the memory delay, and 48 during
both intervals) showed a significant difference in overall activity
between the categories (t test, p � 0.05, Bonferroni corrected).
We will refer to these neurons as “category sensitive,” not cate-
gory selective, because this population also could include neu-
rons that show strong stimulus selectivity for one or more
exemplars from one category. Analyses presented in the following
sections will show that this population of neurons did show hall-
marks of category effects (i.e., greater selectivity across than
within categories and a sharp change in activity across category
boundaries).

A key question was how neural information about the two
different category schemes was distributed among neurons.
There are two possibilities: at one end of the spectrum, neurons
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Figure 2. Behavioral performance of both monkeys. A, B, Monkeys O (A) and L (B) were
proficient at categorizing images in both schemes (scheme A, filled bars; scheme B, open bars).
C, The performance of the two monkeys combined.
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could be multitasking. Individual neurons could show selectivity
for each category distinction under both schemes. 2) At the other
end of the spectrum is specialization, completely separate neuron
populations could show selectivity under the two different cate-
gory schemes.

Category activity under different category schemes
We found that two categorical distinctions under the two cate-
gory schemes were reflected by largely independent PFC neuron
populations. That is, most neurons showed category selectivity
under one category scheme, but not the other. An example neu-
ron is shown in Figure 3A. It showed a clear difference in activity
when the monkey was grouping the images under one category
scheme (Fig. 3A). We will refer to this as the neuron’s “preferred”

category scheme. By contrast, there was little difference in activity
in response to images from the two different categories when the
monkey grouped the same images under the other category
scheme (Fig. 3B). We will refer to this as the neuron’s “nonpre-
ferred” category scheme. The insets in Figure 3, A and B, shows
the neuron’s average activity in response to each image (averaged
across both the sample and delay intervals). Note that for the
preferred category scheme, the neuron showed similar activity in
response to the images from the same category and different
activity in response to images from different categories (Fig. 3A).
By contrast, there is little evidence for the neuron grouping the
images by category under the nonpreferred scheme (Fig. 3B).

This category sensitivity under one but not the other category
scheme was true for most PFC neurons (Table 1). Relatively few
neurons (7.1% or 38 of 536) showed significant category sensi-
tivity under both category schemes (13 neurons during the sam-
ple interval, 19 neurons during the memory delay, and 6 during
both intervals; t test, p � 0.05, as above, Bonferroni corrected).
This is about the level of overlap expected by chance and thus
suggests independent representation of the categories in the PFC
neuron population. Only 2.1% (11 of 536 neurons) showed sig-
nificant category sensitivity for both category schemes, but for
different schemes in the sample and delay intervals (t test, p �
0.05, as above, Bonferroni corrected). By contrast, many more
neurons (29.3% or 157 of 536 neurons) showed significant cate-
gory sensitivity for only one category scheme, but not both (53
neurons during the sample, 73 neurons during the memory de-
lay, and 31 neurons during both intervals).

These neurons showed the same hallmarks of category repre-
sentation that we found in previous studies (Freedman et al.,
2001, 2002, 2003): a sharp transition in activity across the cate-
gory boundary and greater selectivity across than within catego-
ries. Figure 4 plots the average activity of all PFC neurons with
significant category sensitivity (t test, p � 0.05, as above) to im-
ages at different morph levels. On either side of the preferred
category boundary, the average population activity is similar to
images at each morph level. However, there is a sharp change in
activity across the category boundary. For the nonpreferred cat-
egory scheme, there is no sharp transition in activity across the
category boundary; average activity is similar for all morph levels
and across both categories. In other words, little category selec-
tivity is apparent for the nonpreferred category scheme.

To quantify category selectivity, we used a category index that
we have used in prior work (Freedman et al., 2001, 2002). It was
calculated for each neuron with significant category sensitivity (t
test, as above) using each neuron’s difference in average activity
in response to pairs of images from the same category (WCD)
and to pairs of images from different categories (BCD), using
images from the morph lines that crossed the category boundary.
A standard index was computed for each neuron by dividing the
difference between its BCD and WCD values by their sum. Posi-
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Figure 3. Category sensitivity of an example PFC neuron. A, The neuron’s average activity
(mean � SEM) in response to all images from the two categories under category scheme A.
Insets indicate average responses to each image across the sample presentation and memory
delay intervals. B, The same neuron’s activity when scheme B was relevant and data were sorted
by that scheme. C, The neuron carried less information about category scheme A when the
animal was performing category scheme B. sp; Spikes; Fix., fixation epoch.

Table 1. Number of PFC neurons sensitive to each category scheme and trial
interval

Category scheme A Category scheme B Both schemes

Sample presentation 32 of 536 (6.0%) 21 of 536 (3.9%) 13 of 536 (2.4%)
Memory delay 36 of 536 (6.7%) 37 of 536 (6.9%) 19 of 536 (3.5%)
Both intervals 22 of 536 (4.1%) 9 of 536 (1.7%) 6 of 536 (1.1%)

Sub: 38 of 536 (7.1%)
Switched interval 11 of 536 (2.1%)
Total 90 of 536 (16.8%) 67 of 536 (12.5%) 49 of 536 (9.1%)

Switched interval refers to neurons whose preferred interval changed from the sample presentation in one category
scheme to the memory delay in the other category scheme or vice versa.
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tive values indicate a larger difference between categories (i.e., a
category effect) whereas negative values reflect larger differences
within a category than between categories.

Figure 5A shows the distribution of category indices for each
neuron’s preferred category when it was relevant. The distribu-
tion was shifted significantly positive, i.e., there was a significant
category effect (sample presentation mean index � 0.10, p � 3 �
10�5, t test vs mean of zero; memory delay � 0.16, p � 1 � 10�15,
t test vs mean of zero). When the monkeys were performing each
neuron’s nonpreferred category scheme, category index values
were significantly smaller (sample interval mean � 0.03, t test vs
preferred scheme when relevant, p � 0.002; memory delay
mean � 0.08, t test vs preferred scheme when relevant, p � 0.002)
(Fig. 5B). Table 2 shows the population mean category index
values across both monkeys (reported above) as well as the mean
index values for each monkey individually. It shows that similar
category effects were seen in each monkey.

Category effects were modified by category relevance
Because the same images were used in both category schemes, we
were able to group the images according to a given category
scheme both when that scheme was behaviorally relevant and
when it was irrelevant (because the monkeys were performing the
other scheme). The neuron in Figure 3 showed a smaller differ-
ence in activity between the categories of the preferred category
scheme when it was irrelevant (Fig. 3C) compared with when it

was relevant (Fig. 3A). Figure 4 shows the
average activity across all the neurons that
showed significant category sensitivity to
their preferred category scheme (left pan-
els) (t test, as above). The right panels
show activity in response to the neuron’s
preferred category scheme when it was ir-
relevant. The sharp transition across the
category boundary is still evident but the
difference in activity in response to images
from the two categories is smaller than
when the (preferred) category scheme is
relevant. In fact, the mean category index
was significantly lower for the preferred
category scheme when it was irrelevant
(sample interval mean � 0.04, memory
delay mean � 0.08) (Fig. 5C) than when it
was relevant (sample interval mean �
0.10, memory delay mean � 0.16; t tests,
preferred scheme relevant versus irrele-
vant, both p � 0.01) (Fig. 5A). Table 2 lists
both the mean index values across both
monkeys and for each monkey individu-
ally; similar effects were seen in each
monkey.

This decrease in category selectivity
when the preferred category scheme was
irrelevant was due to a decrease in selec-
tivity per se and not an overall decrease in
neural activity. This is illustrated in Figure
5D, which plots the average activity of
each neuron (across both categories) for
both the sample presentation and mem-
ory delay intervals when the preferred cat-
egory scheme was relevant against when it
was irrelevant. There is a high degree of
correlation between them (R 2 � 0.81)

and the slope is nearly 1.0, indicating that overall neural activity is
virtually the same when the monkeys were performing each neu-
rons’ preferred versus nonpreferred category scheme. Thus, as
the single neuron example in Figure 3C implies, there was a loss of
selectivity per se when each neuron’s preferred category scheme
was irrelevant, not a general decrease in neural activity.

Category correlation matrix
To further illustrate these effects, we computed pairwise correla-
tions between each neuron’s average activity in response to a
given image and all other images (see Materials and Methods).
We used activity from the sample presentation and/or memory
delay intervals (considered independently) from every neuron
that showed significant category sensitivity in that interval (t test
as above, p � 0.05, Bonferroni corrected). To compute the cor-
relation matrix, all the images were lined up along each axis in the
same order for a given category scheme such that images 1–14
were always from one category and images 15–28 were always
from the other category. We then computed the correlation be-
tween each neuron’s average activity in response to a given image
and the other images for both the sample and delay intervals,
obtaining a correlation value across the neuron population for
each pair of images. High correlation values meant that the activ-
ity was relatively similar for the two images; low correlation val-
ues meant that activity was relatively dissimilar. All three main
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memory delay (B).
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results discussed above can be seen in these correlation matrices
(Fig. 5).

Figure 6A shows the category effect. It plots the correlation
coefficients for pairwise image comparisons for the preferred cat-
egory scheme of each neuron when that scheme was relevant

during the sample presentation (left panel) and memory delay
(center panel). In the right panel is a map of the comparisons.
Four large boxes corresponding to each quadrant are apparent in
Figure 6A, left and right panels. They indicate higher correlation
values (more similar activity) between images from the same cat-
egory (upper right and lower left quadrants) than for compari-
sons between images from different categories (lower left and
upper right quadrants). The zone marked “Same Category” indi-
cates correlations between images that were members of the same
category, but not physically similar because they were derived
from different prototypes. Their correlation values (mean �
SEM: sample presentation � 0.21 � 0.01, p � 2 � 10�4, 5000
permutation tests; memory delay � 0.26 � 0.008, p � 2 � 10�4,
5000 permutation tests) were significantly higher than correlations
between images belonging to different categories (“Different Cate-
gories,” mean � SEM: sample presentation � �0.20 � 0.008, p �
2 � 10�4, 5000 permutation tests; t test, p � 9 � 10�95; memory
delay � �0.17 � 0.006, p � 2 � 10�4, 5000 permutation tests;
t test, p � 4 � 10�130). The highest correlations (most similar
activity) were between physically similar images from the same
category and derived from the same prototype (“Same Prototype
and Category,” mean � SEM: sample presentation � 0.39 �
0.01, p � 2 � 10�4, 5000 permutation tests; memory delay �
0.38 � 0.01, p � 2 � 10�4, 5000 permutation tests). Thus, in the
PFC, there is a mixture of signals about physical appearance and
category membership.

Figure 6B illustrates the category effects when each neuron’s
nonpreferred category scheme was relevant. During both the
sample presentation (left panel) and memory delay (right panel),
there were still relatively high correlation values for physically
similar images (Same Prototype and Category, sample presenta-
tion � 0.31 � 0.01, p � 2 � 10�4, 5000 permutation tests;
memory delay � 0.32 � 0.01, p � 2 � 10�4, 5000 permutation
tests). But now there are boxes of relatively high correlations off
the diagonal identity line in the Different Categories zones (sam-
ple presentation � 0.1 � 0.01, p � 6 � 10�4, 5000 permutation
tests; memory delay � 0.11 � 0.007, p � 2 � 10�4, 5000 permu-
tation tests). These are the effects of the other preferred category
“leaking through,” that is, still having an effect on activity when
the nonpreferred category scheme is relevant.

Figure 6C illustrates the same comparisons for the same neu-
rons as Figure 6A, but now it shows the effects of each neuron’s
preferred category when the nonpreferred category scheme was
relevant. The effects were weaker in general, but more so for
category per se than physical similarity (Same Category vs Same
Prototype and Category). This is illustrated explicitly in Figure
6D, which plots the average correlation values for Same Category
comparisons versus the Same Prototype and Category compari-
sons as a function of whether the preferred category scheme was
relevant (Fig. 6A) or irrelevant (Fig. 6C). Average correlation
values for each decreased when the category scheme was irrele-
vant, but there was a greater decrease for the Same Category
correlations (sample presentation relevant � 0.21 � 0.01, p � 2 �
10�4, 5000 permutation tests; irrelevant � 0.1 � 0.01, p � 0.003,
5000 permutation tests; memory delay relevant � 0.26 � 0.008, p �
2 � 10�4, 5000 permutation tests; irrelevant � 0.11 � 0.007, p �
0.009, 5000 permutation tests) than for the Same Prototype and
Category correlations (sample presentation relevant � 0.39 �
0.01, p � 2 � 10�4, 5000 permutation tests; irrelevant � 0.31 �
0.01, p � 2 � 10�4, 5000 permutation tests; memory delay rele-
vant � 0.38 � 0.01, p � 2 � 10�4, 5000 permutation tests;
irrelevant � 0.32 � 0.01, p � 2 � 10�4, 5000 permutation tests).
This was confirmed by a two-way ANOVA that used category
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type (Same Category vs Same Prototype and Category) and cat-
egory relevance as factors (Fig. 6D). It revealed a main effect of
category type (average of sample presentation and memory delay,
p � 1 � 10�4) and a main effect of relevance (average of sample
presentation and memory delay, p � 1 � 10�4) as well as a
significant interaction between the factors (average of sample
presentation and memory delay, p � 4 � 10�5), indicating a
greater effect of relevance on the Same Category comparisons
than the Same Prototype and Category comparisons. In other
words, when each PFC neuron’s preferred category scheme is
relevant (Fig. 6A), their activity reflects category membership
and physical appearance. But when the other category scheme is
relevant (Fig. 6C), information about the preferred category
scheme weakens more than information about physical appear-
ance. Thus, not only do PFC neurons tend to represent one, but
not the other, category scheme, they still convey weak informa-
tion about their preferred category scheme when it is not
relevant.

To better visualize these effects, an MDS analysis was applied
to pairwise correlation data presented above. The MDS reduces
the dimensionality to determine whether some of the data clus-
ters together in multidimensional space. Figure 7A illustrates the
responses of PFC neurons when the preferred category scheme
was relevant. It shows that the images generally clustered into two
groups, each corresponding to the two categories of each neu-
ron’s preferred scheme. The Same Prototype and Category im-
ages are denoted by the dashed lines. Note that numbers in Figure
7 correspond to the ordering of images within a category scheme,
not the exact image. There is still some separation based on phys-
ical similarity; images from the same prototype tend to cluster
together (images 1–7, 8 –14, 15–21, and 22–28). The prototype
clusters from the same category are near each other and are dis-
tinct from that of the other category. In the memory delay (Fig.
7A, middle panel), the prototype clusters overlap, suggesting that
the category membership is more important that the physical
similarity. In fact, the mean Euclidean distance (mean � SD)
between images within the same category (sample presentation
images 1–14: 0.32 � 0.29; images 15–28: 0.31 � 0.27; average
within category: 0.32 � 0.28 and memory delay images 1–14:
0.27 � 0.23; images 15–28: 0.28 � 0.25; average within category:
0.28 � 0.24) were significantly smaller than the mean distances
between images from different categories (sample presentation:
0.88 � 0.52; p � 1 � 10�4; memory delay: 0.86 � 0.52; p � 1 �
10�4). The first two dimensions were used in the calculation of
the Euclidean distances because they accounted for 60.9% of the
variance of the sample presentation and 56.4% of the variance of
the memory delay (Fig. 7A, right panel). The addition of a third
dimension only explained 7– 8% more of the variance.

Figure 7B shows the data when the images were sorted by
each neuron’s nonpreferred category scheme when it was rel-
evant. Now, the spatial arrangement of the images derived
from the different prototypes changes. Images from the same
(nonpreferred) category no longer localize overlapping or near
one another (average WCD sample presentation: 0.5 � 0.44 vs
0.32 � 0.28 of the preferred scheme when relevant, t test p �
2.5 � 10�11; memory delay: 0.46 � 0.46 vs 0.28 � 0.24 of the
preferred scheme when relevant, t test p � 1.6 � 10�11). Instead,
the clusters that tend to be nearer one another are derived from
prototypes from the same category under the preferred category
scheme. The first two dimensions were used in the calculation of
the Euclidean distances because they accounted for 52.9% of the
variance of the sample presentation and 57.7% of the variance of
the memory delay (Fig. 7B, right panel). Once again, it illustrates
the effects of each neuron’s preferred category scheme affecting
neural activity even when the monkeys are performing the other
scheme.

As predicted from Figure 6C, when the preferred category
scheme was irrelevant (Fig. 7C), the clustering by category was
diminished. The mean Euclidean distance for images from the
same category under the preferred scheme are significantly larger
when the scheme was irrelevant (sample presentation: 0.37 �
0.31; memory delay: 0.34 � 0.30) (Fig. 7C, left panel) compared
with when that preferred scheme was relevant (sample presenta-
tion: 0.32 � 0.28, t test, p � 1 � 10�2; memory delay: 0.28 � 0.24,
t test, p � 1.1 � 10�3) (Fig. 7C, middle panel). Further, the
distance between images from the same category but different
prototypes (images 1–7 vs 8 –14, images 15–21 vs 22–28) also
increases when the preferred category scheme is irrelevant (sam-
ple presentation images 1–7 vs images 8 –14: irrelevant, 0.57 �
0.43; relevant, 0.46 � 0.33; t test p � 0.04; images 15–21 vs images
22–28: irrelevant, 0.39 � 0.31; relevant, 0.29 � 0.29; p � 0.01;
memory delay images 1–7 vs images 8 –14: irrelevant, 0.45 �
0.34; relevant, 0.24 � 0.24; t test p � 9 � 10�7; images 15–21 vs
images 22–28: irrelevant, 0.47 � 0.34; relevant, 0.34 � 0.30, p �
0.03). This greater difference between images derived from the
same prototype further supports the conclusion that there is in-
creased encoding of physical similarity by neurons when their
preferred category scheme is irrelevant.

Category and match/nonmatch effects
At the end of the trial, a test image was presented and monkeys
had to judge whether it matched the category of the sample. As in
our prior studies (Freedman et al., 2001, 2002, 2003), we found
that many PFC neurons modified their activity depending on the
test image category match/nonmatch status. Of the entire popu-
lation of recorded neurons, 72 of 536 (13.4%) were significantly

Table 2. Category index values across both monkeys and for each monkey individually

Both monkeys Monkey O Monkey L

Average index p value against zero Average index p value against zero Average index p value against zero

Sample presentation
Pref rel 0.10 3 � 10 �5 0.16 7 � 10 �6 0.07 0.01
Non-pref rel 0.03 0.24 �0.01 0.71 0.05 0.05
Pref irrel 0.04 0.08 0.05 0.10 0.04 0.11

Memory delay
Pref rel 0.16 1 � 10 �15 0.16 3 � 10 �9 0.16 3 � 10 �8

Non-pref rel 0.08 1 � 10 �4 0.07 0.01 0.08 1 � 10 �3

Pref irrel 0.08 2 � 10 �5 0.08 1 � 10 �3 0.08 1 � 10 �3

p values show results of t test against a mean index value of zero (i.e., no category effect). Pref rel, Preferred category scheme when relevant; Non-pref rel, nonpreferred category when relevant; Pref irrel, preferred category scheme when
irrelevant.
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sensitive to whether the test stimulus was
a category match or a nonmatch (t test of
all match trials compared with all non-
match trials, p � 0.01). Thirteen neurons
showed greater activity for matches and
59 neurons showed greater activity for
nonmatches.

To test the effects of the current cate-
gory scheme on the match/nonmatch ef-
fects, a two-way ANOVA (evaluated at
p � 0.01) was calculated on the test stim-
ulus activity for all category-sensitive neu-
rons. One factor was whether the monkey
was performing the neuron’s preferred or
nonpreferred category scheme and the
other factor was whether the test stimulus
was a category match or a nonmatch to
the sample. The results are summarized in
Table 3. Approximately 32% (66 of 206)
of category-sensitive neurons showed a
significant main effect and/or an interac-
tion between the factors. Only 4.4% (9
of 206) showed a main effect of the pre-
ferred/nonpreferred category scheme,
which is consistent with our other obser-
vation that overall activity of neurons is
similar whether the preferred or nonpre-
ferred category scheme is relevant. A
larger proportion of neurons, 19.9% (41
of 206), showed a significant main effect
of match/nonmatch. Of these 41 neurons,
29.3% (12 of 41) also showed a significant
interaction with the preferred/nonpre-
ferred category status (i.e., they showed
stronger match/nonmatch effects under
one of the category schemes). Most of
them (10 of 12 or 83.3%) showed stronger
effects of category matching when the
monkey was performing the nonpreferred
category scheme of the neuron. Approxi-
mately 7.8% (16 of 206) of neurons
showed only an interaction effect between
the preferred/nonpreferred category sta-
tus and match/nonmatch. The majority
(10 of 16 or 62.5%) showed stronger cat-
egory match effects for the neuron’s non-
preferred category. Together, these results
demonstrate that some PFC neurons re-
flected the match/nonmatch status of the
test stimuli and possibly the correspond-
ing behavioral response (i.e., letting go of the lever on a match).

Discussion
We report two main results. First, when monkeys switched be-
tween two orthogonal category schemes for the same image set,
independent neuron populations in the PFC reflected the cate-
gory distinctions under the different category schemes. Second,
the effects of category membership were weakened, but not ab-
sent, when monkeys were performing an alternative, competing
category distinction.

We could have found that neurons were multitaskers; that is,
many neurons could have shown sensitivity for all four of the
categories (2 categories � 2 schemes) in a graded fashion (each

category eliciting a unique level of neural activity). Or neurons
could have multitasked by modifying their sensitivity (i.e., chang-
ing which images elicit a given level of activity for each category
scheme). Instead, we found that most PFC neurons only showed
selectivity or much more selectivity for categories under one cat-
egory scheme. These data seem to suggest a sparse encoding
scheme with different neurons representing each category (Vinje
and Gallant, 2000; Olshausen and Field, 2004). Together, these
results support a model of human object recognition (Riesenhu-
ber and Poggio, 2000, 2002) that predicts that different categori-
zation tasks on the same stimuli are mediated by different neuron
populations or circuits in PFC. Humans could learn our task
much more quickly than monkeys, raising the possibility of dif-
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ferent neural substrates between them. However, our results also
agree with recent human neuroimaging findings that when
humans were trained on a similar categorization task, circuits
coding for the trained categorization scheme were suppressed

when subjects were executing a different
task on the same stimuli (Vogels et al.,
2002; Jiang et al., 2007). In any case, al-
though our monkeys did require a great
deal of training, humans often have years
of experience with familiar categories.
Thus, our task likely tapped into the neu-
ral substrates that allow humans to flexi-
bly categorize familiar categories. Finally,
as in previous studies, many neurons
showed category match/nonmatch ef-
fects, i.e., different levels of activity in re-
sponse to a test stimulus depending on
whether it matches the category of the
sample. This suggests that this population
of neurons may also contribute to the cat-
egory match judgments in addition to rep-
resenting the categories per se. A significant
proportion of them showed stronger
match/nonmatch effects for the neuron’s
nonpreferred category scheme, suggesting
some independence (or at least a non-
straightforward relationship) between the
neuron ensembles that represent the cate-
gory and those that determine category
matching.

Our results seems to contrast with
studies and theories suggesting that many
PFC neurons multitask (Duncan and
Miller, 2002). However, the indepen-
dence of the neural representation of the
two category schemes may have been due
to the demands of our task: the two dif-
ferent category schemes were in direct
competition. Because images had to be
categorized differently under the two dif-
ferent category schemes, there was a high
probability of miscategorization by the
wrong scheme. Such interference has been
observed when humans switch between
different category tasks; images from one
task are often miscategorized in the other
(VanRullen and Thorpe, 2001). Thus, the
brain may have reduced the chances of
this error by representing the category

distinctions in two independent neuron populations, rather than
multiplex the representations onto overlapping populations of
neurons. The lingering effects of the neurons’ preferred category
scheme when the nonpreferred scheme was being performed un-
derscored the utility of their independent representation for re-
ducing errors, although it is possible that this effect could have
been due, in part, to the monkeys thinking they were performing
the currently irrelevant category scheme and accidentally re-
sponding correctly under the relevant scheme. Or alternatively,
the monkeys could be trying to solve the task with the schemes
weighted probabilistically on each trial (e.g., they could have
given the relevant scheme 80% weight and the irrelevant scheme
20%) instead of in a binary fashion. The monkeys’ high level of
performance suggests that the contribution of these alternatives
would be minimal. It is also possible that the categories were
represented in independent neurons because the monkeys
learned the categories separately before learning to flexibly
switch between them. In any case, the weakening of selectivity
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Figure 7. Multidimensional scaling of correlation coefficients during the sample presentation and memory delay. A, The images
tended to cluster into two groups corresponding to the two categories (images 1–14 and images 15–28) of the preferred category
scheme. The representation of the constituent images (dashed lines) from the two prototypes of each category overlapped. B, The
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category scheme was irrelevant, the clustering by category diminished and clustering of same prototype and category images
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Table 3. Category-sensitive PFC neuronal responses to test image presentation

Test image presentation No. of category-sensitive neurons

Match/nonmatch effect 41 of 206 (19.9%)
With an interaction effect 12 of 41 (29.3%)
M/NM effect greater for preferred 2 of 12 (16.7%)
Nonpreferred 10 of 12 (83.3%)

Preferred/nonpreferred effect 9 of 206 (4.4%)
Preferred 5 of 9 (55.6%)
Nonpreferred 4 of 9 (44.4%)

Interaction-only effect 16 of 206 (7.8%)
M/NM effect greater for preferred 6 of 16 (37.5%)
Nonpreferred 10 of 16 (62.5%)

M/NM, Match/nonmatch.
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for the preferred category scheme when it was irrelevant seems
to suggest a mechanism for suppressing irrelevant competing
information. One could test these possibilities by training
monkeys on independent, noncompeting category distinc-
tions. If, by contrast, neurons multitask these categories, it
would suggest the distribution of information across PFC neu-
ron ensembles may be arbitrary. In other words, it may be the
that the nature and organization of PFC ensembles are far
more dependent on top– down behavioral demands than bot-
tom– up sensory inputs, a sharp contrast to the organization
seen in sensory cortex.
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