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Abstract

■ We examined whether PFC neuron activity reflects categori-
cal decisions in monkeys categorizing ambiguous stimuli. A
morphing system was used to systematically vary stimulus
shape and precisely define category boundaries. Ambiguous
stimuli were centered on a category boundary, that is, they
were a mix of 50% of two prototypes and therefore had no
category information, so monkeys guessed at their category

membership. We found that the monkeysʼ trial-by-trial decision
about the category membership of an ambiguous image was
reflected in PFC activity. Activity to the same ambiguous image
differed significantly, depending on which category the monkey
had assigned it to. This effect only occurred when that scheme
was behaviorally relevant. These indicate that PFC activity
reflects categorical decisions. ■

INTRODUCTION

Categorization is the process of detecting the common-
alities that unite different experiences. This allows us to
group items by their function rather than their exact
appearance. Although many, if not most, animals catego-
rize to some degree, the primate brain is an especially
prodigious categorizer. Primates learn categories more
quickly than other species (Wright & Katz, 2007) as well
as learn very high-level, abstract, multivariate categories
like “haute cuisine” or “peace, love, and understanding.”
Thus, when we encounter ambiguous situations, our brains
often guess about their category in an attempt to give them
meaning. As a result, however, our brains can “overcategorize,”
that is, they make a categorical decision when there
is actually no category at all (e.g., faces in clouds). We
sought to exploit this in monkeys to determine whether
neural activity in higher-level cortex reflects categorical
decisions about visual stimuli. The reasoning was that if this
neural activity truly reflected categorization rather than per-
ception per se, neural activity to an ambiguous, category-
neutral stimulus should reflect whatever category monkeys
think the stimulus belongs to at a given moment.
To this end, we examined activity in the PFC. PFC is the

brain area most central to higher-order cognition and
implicated in neuropsychiatric disorders (for reviews,
see Bonelli & Cummings, 2007; Stuss & Knight, 2002;
Miller & Cohen, 2001). Furthermore, it has been shown
to have neural correlates of abstract visual categories
(Cromer, Roy, & Miller, 2010; Roy, Riesenhuber, Poggio, &
Miller, 2010; Diester & Nieder, 2008; DeGutis & DʼEsposito,
2007; Freedman, Riesenhuber, Poggio, &Miller, 2001, 2002,

2003; Wyttenbach, May, & Hoy, 1996). Using a novel be-
havioral paradigm (Cromer et al., 2010; Roy et al., 2010;
Freedman et al., 2001, 2002, 2003), we parameterized using
a morphing system to blend between different “cat” and
“dog” prototypes, which created images of varying physical
similarity (Figure 1). This revealed a hallmark of perceptual
categorization in both behavior and PFC neural activity: A
sharp transition across a discrete category boundary such
that stimuli from the same category are treated more simi-
larly than stimuli directly across the boundary (Cromer
et al., 2010; Roy et al., 2010; Seger &Miller, 2010; Freedman
et al., 2001, 2002, 2003; Miller, Brody, Romo, &Wang, 2003;
Miller, Freedman, & Wallis, 2002; Wyttenbach et al., 1996).
A modification of this paradigm allowed us to test for
categorical guesses. In the current study, we added morph
images that were on the boundary between categories.
That is, they were category ambiguous, belong to neither
category. Because the category ambiguous morphs none-
theless looked like either category (and because we offered
no feedback about category membership; see Methods),
sometimes the monkeys guessed that a given ambiguous
image belonged to one category and other times that it
belonged to the other category. We found that the activity
of category-selective PFC neurons reflected the monkeyʼs
current category guess. This suggests that PFC neurons are
indeed involved in categorical decisions.

METHODS

Subjects

Two adult rhesus monkeys (Macacca mulatta) weighing
6.0 and 9.5 kg were used in this study. The animals were
handled in accord with National Institutes of Health and
the Massachusetts Institute of Technology Committee onMassachusetts Institute of Technology
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Animal Care guidelines. Using previously described
methods (Roy et al., 2010), they were implanted with
recording hardware. Monitoring of eye movements was
done using an infrared eye tracking system (Iscan, Inc.,
Woburn, MA) with a sampling rate of 240 Hz.

Stimuli and Behavioral Task

The 3-D cat and dog images used in this study were the
same as those in previous studies (Cromer et al., 2010;
Roy et al., 2010; Freedman et al., 2001, 2002, 2003). A
computerized 3-D morphing system (Shelton, 2000) gen-
erated parametric blends (morphs) of four prototypes
(two cats and two dogs; Figure 1A). The morphs were
linear combinations of varying percent compositions of
the two constituent prototypes along corresponding
points. The stimulus space was divided into two different
category schemes where the boundary lines were orthog-
onal. Each boundary line divided the morph space into
two categories (Figure 1A, Scheme A in left and Scheme
B in right). Any image that contained more than a 50%
contribution from a prototype of a one category was con-
sidered a member of that category. The monkeys viewed

thousands of images generated from combinations of all
four prototypes during training to ensure they learned to
categorize the whole stimulus space. During the neural
recording sessions, 34 images from seven levels of com-
binations between each pair of prototype (100:0, 80:20,
60:40, 50:50, 40:60, 20:80, 0:100) were used as the
sample images. The full set of images and category desig-
nations for both schemes is shown in Figure 1A. For this
study, we were most interested in the behavioral and
neural responses to the eight images that were a 50%
blend of the pairs of stimuli, making them ambiguous.
The monkeys were trained to perform a delayed-

match-to-category task (Figure 1B). To start a trial, the
monkey held a bar and acquired a fixation target for
1000 msec. For the first 500 msec, the color of the fixation
dot indicated which category scheme (blue for Scheme A
and red for Scheme B) would be in effect for the trial. The
fixation dot turned to white for the remaining 500 msec.
A sample image was presented for 600 msec. This manu-
scriptwill focus on the eight ambiguous images. A 1000-msec
memory delay followed the sample presentation. After
the memory delay, a test images was presented, and if
it matched the category of the sample images, the

Figure 1. Stimuli and
behavioral task. (A) Images
were generated by morphing
prototypes along six morph
lines. Monkeys learned to
categorize the same images
under two different schemes.
Some images were of equal
proportion of two prototypes,
that is, they were ambiguous
and sat on the boundary lines.
(B) Monkeys performed a
delayed match-to-category
task (see Methods). For the
ambiguous stimuli, the category
match/nonmatch was randomly
assigned.
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monkey released the bar for a juice reward. If the test
images did not match the sample image category, the
monkey continued to hold the bar through a second
1000-msec delay that was followed by a category match
image to which the monkey responded. The monkeys
were rewarded randomly for the category membership
guesses they made when presented with the ambiguous
stimuli. Category Scheme A/B and match/nonmatch
trials were randomly interleaved and occurred at similar
frequency. The monkeys were required to maintain fixa-
tion within a ±2 degree window centered on the images
at the center of the screen throughout the trial.
When a given category schemewas relevant, we included

four category images that were at themidpoint (50%) along
the morph lines that crossed the (currently relevant) cate-
gory boundary (Figure 1A), that is, they were on the cate-
gory boundary. Thus, unlike the bulk of the images, the
category assignment of these images was ambiguous. Also
included were two intracategory images that were at the
midpoint between the two prototypes that were members
of the same category under the current category scheme
(Figure 1A). Under the current category scheme, these
latter images were fully within a category, and thus, their
category assignment was unambiguous. But note that,
under the other scheme, they fell on the category boundary
and would then be ambiguous. This allowed us to deter-
mine how monkeys (and their neurons) treat the same
images when they were ambiguous versus unambiguous.

Recording

On each monkey, recording chambers were stereotaxi-
cally placed using MRI images and an anatomical atlas
(Paxinos, Huang, & Toga, 1999) over PFC. The chamber
allowed access to the principal sulcus and anterior arcuate
sulcus (Areas 45, 46, and 12). For each recording day,
8–16 epoxy-coated tungsten electrodes (FHC, Inc., Bowdoin,
ME) were lowered into the brain using custom-made
screw-driven microdrives. Each microdrive was used to
lower two electrodes through a plastic grid with 1-mm
spacing (Cromer et al., 2010; Roy et al., 2010; Freedman
et al., 2001, 2002, 2003). Activity was recorded from well-
isolated neurons without first prescreening for task-related
activity such as stimulus or category activity. On average,
one to two neurons were isolated per electrode. In all
536 lateral PFC neurons were recorded over 78 sessions
(333 from Monkey O in 38 sessions and 203 from Monkey
L in 40 sessions). Reconstructed recording locations can be
found in Figure 1C of Roy et al. (2010). All waveforms were
digitized and then stored for off-line sorting into indi-
vidual neurons using principal components analysis
(Offline Sorter, Plexon, Inc., Dallas, TX).

Data Analysis

To determine if previous category membership decisions
had an influence on the guessing activity of the monkeys,

a 1-back analysis was performed. The response of the
previous unambiguous trial was counted only if the trial
was of the same category scheme as the ambiguous trial.
The ratio of responses to the constituent categories was
calculated. The previous trials of the other category
scheme were excluded as they did not have any bearing
on the current category scheme.

Neuronal activity was averaged over three time epochs
of a trial: sample presentation (100–600 msec after
sample onset), the memory delay (300–1100 msec after
sample offset), and the test image presentation (100 msec
after the test image onset to 2 SD before each monkeyʼs
daily average RT to match trials). This epoch was chosen
to reduce the influence of the behavioral response on
the neural activity. Monkey O had a mean RT to match
trials of 284 msec, making the test epoch interval an aver-
age of 173 msec. Monkey Lʼs mean RT to match trials was
350 msec with a test epoch interval of 232 msec.

For all analysis, the neural activity was normalized by
first subtracting the minimum activity during the epoch
of interest and then dividing by the difference of the
maximum and minimum firing rates (Cromer et al., 2010;
Roy et al., 2010; Freedman et al., 2001, 2002, 2003).
Normalizing maximized the dynamic range of each neuron
in each time epoch. Average firing rate traces were filtered
using a least-squares smoothing filter (Savizky-Golay filter)
with a weighting value of 51 msec. Standard statistical
methods such as t tests were used with the appropriate
corrections for repeated measures.

The latency at which there was a significant difference
in neural information was reached between the constitu-
ent categories of the preferred category for the neural
population was calculated. This time point was defined
as the point of maximum rise in the difference function
around the time that the information difference reached
significance (Buschman, Siegel, Roy, & Miller, 2011). The
maximum rise statistic is more resilient to the number of
neurons than using the first time point of significance as
changing the number of neurons changes the threshold
of significance but not necessarily the shape of the func-
tion or the point of maximum slope. Once the first point
of significance was determined, the search for the maxi-
mum rise was restricted to a 50-msec window. To assess
the uncertainty about the time to significance, a distribu-
tion of maximum rise times was generated by randomly
resampling with replacement from the neural population
and recalculating the maximum rise time 1000 times. From
this distribution confidence intervals were determined.

In this experiment, the monkeys completed many
more trials with unambiguous stimuli as compared with
trials with ambiguous stimuli. Before the neural analysis
of latency was initiated, the number of trials involving
unambiguous stimuli was stratified (balanced) to match
the number of trials with ambiguous stimuli. From the
larger pool of unambiguous trials, the same number of
trials as with ambiguous stimuli was randomly chosen
and averaged. This process was repeated for the total

Roy, Buschman, and Miller 1285



number of ambiguous trials. For example, if there were
15 ambiguous trials, 15 trials were randomly drawn from
the unambiguous pool and averaged for a total of 25 times.

To assess the category selectivity strength of the neurons
that remained selective during the ambiguous trials, a
category index was generated as previously described
(Cromer et al., 2010; Roy et al., 2010; Freedman et al.,
2001, 2002, 2003). Briefly, for the unambiguous trials, we
calculated each neuronʼs difference in average activity in
response to pairs of images along the morph lines that
crossed the category boundary. The within-category dif-
ference (WCD) was calculated by taking the average abso-
lute difference between the 100% and 80% morphs and
the 80% and 60% morphs for both categories. The
between-category difference (BCD) was calculated by
averaging the across-boundary differences between the
60% of one category and 60% of the other category. The

category index (range: −1 to 1) was the ratio of the differ-
ence of the WCD and BCD and their sum. A more positive
category index means a larger difference in the responses
to morphs between categories than within categories. The
category index was calculated for the sample presentation
and memory delay epochs separately.

RESULTS

Behavior

Our analysis focused on behavior and neural activity related
to the category-ambiguous versus category-unambiguous
sample images seen at the start of the trial. The decision
about the category of the category-ambiguous sample
was reflected in the monkeysʼ comparison between it
and the (clearly) category-unambiguous test image at the

Figure 2. Behavioral
performance of both monkeys.
Monkey O (A) and Monkey L
(B) categorized the ambiguous
stimuli as members of the
appropriate category when
they were not on the boundary
lines (darker squares) and
guessed the membership with
equal probability (50%) when
they sat on the boundary lines
(green squares). On average
across all sessions, both
monkeys guessed a similar
number of trials in each
category (horizontal plots,
mean ± SEM ). (C) Combined
behavioral performance of
the two animals.
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end of the trial (Figure 1B). Both monkeys correctly cate-
gorized all the unambiguous sample images at a high rate
(>80%). Monkey Oʼs overall performance was 87 ± 19%
(mean ± SD) and Monkey Lʼs was 87 ± 19%. This included
the images that were at a midpoint between the same-
category prototypes and thus were unambiguously
within the same category under the current scheme.
By contrast, under the other scheme, when the same mid-
point images were on the category boundary (and thus
ambiguous), the monkeys guessed at their category
assignment. This is illustrated in Figure 2. For the midpoint
unambiguous images (squares not on boundary), the color
reflects the percentage of trials the monkeysʼ categorized
the image correctly (as belonging to the category of which
it was actually a member). These images were categorized
nearly flawlessly (<90%). However, when category scheme
switched and the same midpoint images (along with two
others)wereon theboundary of the current category scheme
and thus category ambiguous, the monkeysʼ performance
was at chance. These are the images on the boundary in
Figure 2. Their color reflects the percentage of trials the

monkeys categorized the images as belonging to just one
of the categories, arbitrarily chosen. As can be seen in the
bar graph to the right of each figure, across all sessions the
monkeysʼ divided their categorization of the ambiguous
images between the two currently relevant categories (that
is, they guessed). The monkeysʼ recent history of categori-
cal decisions had little or no influence on the current guess
for an ambiguous image (Figure 3). For three of the four
categories, a guess that an ambiguous image belonged to
that category was preceded by an equal number of trials
with a (correct) decision for each category of that category
scheme (mean ± std; t test, Figure 3A p = .98, B p = .63,
C p = .53). For the fourth category, guessing showed a
slight (mean = 46 ± 18% vs. 53 ± 18%) but significant
bias toward guessing an image as Category 4 after a trial
with an unambiguous Category 3 (t test, p = .007). In
short, monkeys did not simply base their category guesses
for an ambiguous image on the categorical decisions of
the immediately preceding trials (e.g., they did not guess
“cat” because the last trial had a “cat”). Across all sessions,
their guesses about ambiguous images seemed random.

Figure 3. Influence of previous
trial. The subset of trials where
the previous trial was of the
same category scheme and the
sample image was unambiguous
were investigated for each
category across all sessions
(mean ± std). For three of
the categories (A, B, C), the
previous trial behavioral
decision did not impact the
guessing. There was a slight,
but significant, bias away from
guessing Category 4 when the
previous trial was a Category 3
image (D).
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Our goal was to determine whether neural activity in PFC
reflected these guesses.

Effects of Category Decisions on Neural Activity

The category-related properties of this PFC neuron popu-
lation have been described (Roy et al., 2010). Briefly, a
neuron was deemed “category sensitive” if there was a
significant difference in average firing rate to all the un-
ambiguous images from one category versus the other
under either or both category schemes (t test, p < .05,
Bonferroni-corrected, during the sample presentation and/
or the memory delay, see Methods and Roy et al., 2010).
Many randomly selected lateral PFCneurons (206/536) were
category sensitive. The neuronʼs “preferred category” was
determined by which category elicited the greater average
activity. Here, we focus on the comparison of neural activ-
ity to ambiguous versus unambiguous sample images.

Figure 4A shows an example of a category-sensitive
PFC neuron. When the monkey was performing one of
the category schemes (Scheme A), it showed greater
average activity to all the unambiguous sample images
from one category (the “preferred category”) than the
other (“nonpreferred”) category. It is during these inter-
vals that the monkey has to categorize the sample image
and hold that category decision in STM. To determine if
this activity truly reflected the monkeyʼs trial-by-trial

decision of the sample imageʼs category, we examined
the trials with ambiguous images. We sorted these trials
by whether the monkey decided that the ambiguous
image was the neuronʼs preferred versus nonpreferred
category. We did so by using the monkeyʼs decision
about whether the sample matched the category of the
clearly unambiguous test stimulus. Figure 4B shows the
result. When we sorted this neuronʼs activity based on
the monkeyʼs trial-by-trial decision about the category
membership of the ambiguous sample images, the neuron
showed a significant increase in activity when the monkey
guessed that the image was the preferred versus non-
preferred category, although the images were the same
in both cases. Thus, the level of activity of this neuron
reflects the monkeyʼs decision about the sampleʼs category
membership.
Of the 206 PFC neurons that showed category sensitivity

to unambiguous stimuli, 68.4% or 141/206 was also sig-
nificantly category sensitive to the ambiguous stimuli when
we sorted trials by the monkeyʼs decision, as above. As
seen for unambiguous images (Roy et al., 2010), some
PFC neurons showed this category decision effect for only
one category scheme (n = 38 for category Scheme A and
n = 63 for category Scheme B; t test, p < .05, Bonferroni-
corrected) and some for both schemes (n = 40; t test,
p < .05, Bonferroni-corrected). The modal group of neu-
rons (70 of 141 neurons or 50%) showed the guessing
effect during the memory delay only, after the monkeys
had seen the ambiguous sample image but before they
had to register their guesses by responding to the category
match/nonmatch status of the forthcoming (unambiguous)
test stimulus. The remainder of neurons showed an effect
of guessing during the sample presentation only (38 of
141 neurons or 27%) or during both the sample and delay
intervals (23 of 141 neurons or 16.3%). Only a few neurons
(10 of 141 neurons or 7.1%) showed significant category
sensitivity to unambiguous images in one category scheme
but a guessing effect under the other category scheme.
Most of neurons (98 of 141 or 70%) that were sensitive
to the guessed category of the ambiguous images showed
the samecategory preference that they did to unambiguous
images. The remainder of the analyses will focus on these
neurons.

Categorization of Ambiguous Stimuli Takes Longer

We next compared the neural latency for category infor-
mation about the ambiguous versus unambiguous images.
This time point was defined as the point of maximum rise
(slope) in the difference of the responses to the preferred
versus nonpreferred categories (see Methods). The search
for the maximum rise time was confined to a 50-msec
window around the first point that the difference reached
significance. The population of neurons was bootstrapped,
and the maximum rise time was redetermined 1000 times
to generate a population from which confidence intervals
could be evaluated.

Figure 4. Category and guessing sensitivity of an example PFC neuron.
(A) This neuron preferred category Scheme A with its average activity
(mean ± SEM ) in response to images of Category 1 (purple line)
was greater than its response for Category 2 (gray line) in the sample
presentation interval and throughout the memory delay. (B) The
neuron showed the same category sensitivity for ambiguous stimuli,
with an increased activity when the monkey guessed the image to
be Category 1 (purple line) as opposed to Category 2 (gray line).
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This analysis revealed that the category sensitivity
during guessing (ambiguous image) trials appeared at a
significantly longer latency than that to unambiguous
images. Figure 5 shows the normalized average firing rate
activity of the population of 98 PFC neurons (see above).
Figure 5A shows their average population activity on
trials with unambiguous images, and Figure 5B shows
the trials in which the monkeys guessed at the category

of the ambiguous images. In both cases, average neural
activity begins to distinguish between the two categories
during presentation of the sample image. By necessity
(see Methods), the number of trials with ambiguous stim-
uli (mean = 20.5 ± 1.7 trials per category per day) was
much fewer than that of unambiguous (163 ± 5 trials per
category per day). Therefore, to determine the neural
latency of the category effect, we stratified the number
of trials used in the analysis of unambiguous trials to
match the number of ambiguous trials (see Methods).

Figure 5C shows plots of the average difference in activ-
ity to the two categories for the stratified unambiguous
trials versus ambiguous trials. The latency in average
PFC activity when categorizing unambiguous images
was 124 msec (95th percentiles = 101, 171; Figure 5C,
green trace), compared with 291 msec when guessing at
the category of the ambiguous image (95th percentiles =
240, 334; Figure 5C, orange trace; t test, p< .05, Bonferroni-
corrected). A fairly trivial explanation for the latency dif-
ference would be that PFC neurons were not as strongly
activated by ambiguous versus unambiguous images.
Figure 5D, which shows the normalized mean firing rate
in response to unambiguous and ambiguous stimuli, indi-
cates that this was not the case. Both the subset of neurons
that were category sensitive during sample presentation
(Figure 5D, left) and the memory delay (Figure 5D, right)
had almost identical activity levels to unambiguous versus
ambiguous images (slope = 0.97, not different from unity
p= .50, r= 0.93 and slope = 0.95, not different from unity
p = .79, r = 0.93, respectively).

Figure 5. Latency of category sensitivity. The average (mean ± SEM )
neural response for the preferred category of PFC neurons that
maintained the same preference during trials with unambiguous (A)
and ambiguous (B) stimuli. (C) The maximum rise time was calculated
in a 50-msec window centered on the first time point of significance in
the difference in neural activity. It took significantly longer during the
guessing trials than the unambiguous trials (124 msec vs. 290 msec).
(D) Comparison of normalized neural responses averaged over the
sample presentation (left) and the memory delay (right) for
unambiguous and ambiguous stimuli. The activity level of the
population of PFC neurons were similar with both types of stimuli with
slopes not different from unity. Note the number of trials in the
unambiguous averages was stratified to match the lower number of
ambiguous trials.

Figure 6. Category selectivity index values. (A) Index values of PFC
neurons (n = 206) that showed category sensitivity for one of the
category schemes with unambiguous stimuli. (B) Index values for the
subpopulation of neurons (n = 98) that maintained the same category
sensitivity during trials with ambiguous stimuli.
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It was possible that PFC neurons that showed effects of
category guesses were more category sensitive in general
than those neurons that did not show a guessing effect.
To determine this, we calculated a category index (see
Methods; Cromer et al., 2010; Roy et al., 2010; Freedman
et al., 2001, 2002, 2003). Each neuronʼs difference in
mean activity in response to pairs of images from the
same category (WCD) and between categories (BCD)
was determined. The index was the ratio of the difference
between WCD and BCD and their sum. Neurons that
showed stronger category sensitivity would have great
positive index values. The category index for the 206
category-sensitive neurons is shown in Figure 6A for both
the sample presentation (left) and memory delay epochs
(right). The category indices for PFC neurons with a
guessing effect (n = 98) are shown in Figure 6B. The
spread of the index values was similar for both subsets
of PFC neurons, suggesting that PFC neurons that re-
mained sensitive during ambiguous trials were not system-
atically more sensitive to categories.

DISCUSSION

We report that neural activity in PFC reflected monkeysʼ
categorical decisions about ambiguous category-neutral
images that had no actual category information. Neural
correlates of visual categories and category learning are
well-established higher cortical areas including PFC
(Cromer et al., 2010; Roy et al., 2010; Freedman et al.,
2001, 2002, 2003; Miller et al., 2002), posterior parietal
(Fitzgerald, Swaminathan, & Freedman, 2012; Swaminathan
& Freedman, 2012; Freedman & Assad, 2006, 2011), and
inferior temporal cortices (De Baene, Ons, Wagemans, &
Vogels, 2008;Gross, 2008; Kriegeskorte et al., 2008; Freedman
et al., 2003; Sigala & Logothetis, 2002; Vogels, 1999). Those
studies have shown that neurons, like behavior, sharply
parse a continuous set of often very similar looking stimuli
into learned categories. Here, we show that PFC neurons
can also parse their activity to the exact same stimuli depend-
ing on which category the monkeys think the stimulus be-
longs to at one moment versus another. This is similar to
effects seen when monkeys guess at the motion category
of moving dots that actually have no aggregate direction
and thus no category (Shadlen & Newsome, 1996, 2001).
In those studies, each category was linked to a unique
motor response. Our study extends such results by dem-
onstrating category effects in the absence of any possi-
ble effect of a motor response. In our experimental
design, the motor response indicated a match to the
sample category; different motor responses were not
linked to different categories. This means that our
category guessing effect reflected a purely top–down,
cognitive decision independent of any specific motor
response.

In fact, PFC seems to even discard bottom–up informa-
tion in favor of top–down (Cromer et al., 2010; Roy et al.,

2010). The same PFC neurons can participate in repre-
senting different categories (i.e., they are category gener-
alists) when there is little chance the categories will be
confused because the categories look different (Cromer
et al., 2010). By contrast, when the same stimuli are char-
acterized two different ways, different PFC neurons spe-
cialize for each category (Roy et al., 2010). If the physical
appearance of the stimuli alone (bottom–up informa-
tion) were determining how information is distributed
among PFC neurons, then we would expect the opposite
pattern of results. There should be the most overlap in
representation when the categories are competing (as
in Roy et al., 2010) because the exact same images are
being categorized. Thus, consistent with its position at
the top of the cortical hierarchy, top–down information
seems to dominate in PFC. Indeed, PFC seems to be a
major source of top–down signals to other cortical areas.
Frontal cortical neurons reflect shifts of top–down atten-
tion with a shorter latency than more posterior cortex (Li,
Gratton, Yao, & Knight, 2010; Buschman & Miller, 2007)
and their activity goes into rhythmic synchrony with visual
cortex with a phase offset that suggests the former is driv-
ing the latter (Gregoriou, Gotts, Zhou, & Desimone,
2009). Microstimulation of PFC produces top–down
attention-like modulation of visual cortex (Moore &
Armstrong, 2003).
This is not meant to imply that PFC is the one area

that makes categorical decisions. There is no single
“categorization area” or a single “decision area” in the
brain. Categories are represented in a distributed fashion
across the brain, and there are multiple neural systems
involved (Seger & Miller, 2010). Likewise, many areas
contribute to decision-making (Heekeren, Marrett, &
Ungerleider, 2008; Gold & Shadlen, 2007). Which areas
contribute to categorical decisions likely depends on
the nature of the task at hand. For example, during
motion categorization, LIP neurons showed stronger
category effects at an earlier latency than PFC neurons,
suggesting that LIP is strongly involved in the decision-
making (Swaminathan & Freedman, 2012). It remains
to be seen if this result will hold during nonspatial tasks
with complex images as stimuli or during more dy-
namic tasks (e.g., multiple category boundaries or chan-
ging decision criteria). Our results nonetheless indicate
that PFC activity can reflect “pure” cognitive factors
independent of bottom–up sensory inputs or motor
output.
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