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SUMMARY

Neural correlates of visual categories have been
previously identified in the prefrontal cortex (PFC).
However, whether individual neurons can represent
multiple categories is unknown. Varying degrees of
generalization versus specialization of neurons in
the PFC have been theorized. We recorded from
lateral PFC neural activity while monkeys switched
between two different and independent categorical
distinctions (Cats versus Dogs, Sports Cars versus
Sedans). We found that many PFC neurons reflected
both categorical distinctions. In fact, these multi-
tasking neurons had the strongest category effects.
This stands in contrast to our lab’s recent report
that monkeys switching between competing cate-
gorical distinctions (applied to the same stimulus
set) showed independent representations. We
suggest that cognitive demands determine whether
PFC neurons function as category ‘‘multitaskers.’’

INTRODUCTION

The ability to categorize or group stimuli based on common

features is a fundamental principle of cognition (Gluck et al.,

2008; Rosch, 1973). Categorization gives our perceptions

meaning by allowing us to group items by function. Without

this ability to extract useful information while ignoring irrelevant

details one could become overwhelmed with individual stimuli

at the expense of a ‘‘big picture.’’ This is an experience observed

clinically in many people with neuropsychiatric disorders,

including autism and schizophrenia (Bölte et al., 2007; Kuper-

berg et al., 2008; Scherf et al., 2008; Uhlhaas and Mishara,

2007). For instance, when asked to categorize a dog, one often

has a general sense of what a dog entails. However, a person

with autism may instead picture each individual dog they have

seen (Grandin, 2006).

The prefrontal cortex (PFC) is the brain area most central to

higher-order cognition and implicated in neuropsychiatric disor-

ders (for reviews, see Bonelli and Cummings, 2007; Miller and

Cohen, 2001; Stuss and Knight, 2002). Using a novel behavioral

paradigm, Freedman et al. (2001) first identified neural correlates

of visual categories in the primate PFC. Categories were param-

eterized using a morphing system to blend between different
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‘‘cat’’ and ‘‘dog’’ prototypes, which created images of varying

physical similarity (Figure 1A). Importantly, images with close

visual features could be in opposite categories while images

with a greater difference in physical similarity could be in the

same category. This allowed testing for a hallmark of perceptual

categorization: a sharp transition across a discrete category

boundary such that stimuli from the same category are treated

more similarly than stimuli directly across the boundary (Miller

et al., 2003; Wyttenbach et al., 1996). The paradigm thus enabled

‘‘visually selective’’ neurons that responded to similar physical

features of the stimuli to be dissociated from those neurons

that actually categorize the stimuli on a more abstract level.

Freedman et al. found that approximately 1/3 of randomly

selected lateral PFC neurons were involved in categorization.

This large proportion of neurons raises a critical question: do

these neurons act as cognitive ‘‘generalists’’ or ‘‘specialists’’?

Generalist or adaptive theories predict many PFC neurons are

highly adaptable by task demands and may multiplex different

types of information across different contexts (Duncan, 2001;

Duncan and Miller, 2002; Miller and Cohen, 2001). Thus, each

neuron could multitask and represent multiple category distinc-

tions, explaining why so many neurons could be involved in

representing the Cat and Dog categories. By contrast, there is

a more specialist or localist view of PFC function that posits

highly specialized properties for each PFC neuron (Goldman-

Rakic, 1996a, 1996b; Romanski, 2004; Wilson et al., 1993). While

this idea could also explain the Freedman et al. results since it

allows for long-term plasticity (and thus the high proportion of

PFC ‘‘Cat versus Dog’’ neurons by the long-term training on

the category task), these two theories predict different outcomes

on how the PFC would represent multiple category schemes.

That is, generalist theories predict individual PFC neurons could

encode more than one category scheme while specialist models

predict individual neurons would only encode a single category

scheme, with different schemes being encoded in largely distinct

neural populations. Whether or not PFC neurons are generalists

or specialists is unresolved because virtually all neurophysiolo-

gists train monkeys on a single cognitive problem. In this

study, we addressed this question by investigating how the

PFC encodes multiple, independent categories in monkeys

trained to randomly alternate between performing two category

problems.

We employed the same Cat-and-Dog morph stimuli used in

previous studies (Freedman et al., 2001, 2002, 2003, 2006;

Roy et al., 2010) but also trained monkeys on a set of Car morph

stimuli that were categorized as either ‘‘Sports Cars’’ or
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Figure 1. Stimulus Set and Behavioral Task

(A) Morphing allowed parameterization of sample images. An example morph

line between Cat prototype c1 and Dog prototype d2 displays images at the

morph steps used for recording. Intermediate images were a mix of the two

prototypes. Those images comprised of greater than 50% of one category

(marked by the ‘‘Category Boundary’’) where to be classified as a member

of that category.

(B) Stimuli came from two independent category sets, Animals and Cars.

The Animal category set was divided into ‘‘Cats’’ versus ‘‘Dogs’’ and the Car

category set had ‘‘Sports Cars’’ and ‘‘Sedans’’ categories. Both sets were

comprised of four prototype images (two from each category as shown) as

well as images along four between category morph lines.

(C) The delayed match to category task required monkeys to respond to

whether a test stimulus matched the category of the sample stimulus. During

the sample and delay periods, the monkeys must hold in memory the category

of the sample stimulus but the outcome of the trial is unknown.
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‘‘Sedans’’ (Figure 1B). Monkeys performed a delayed match to

category task (Figure 1C) with samples coming randomly from

either category set while we recorded from the lateral PFC.

Thus, on any given trial a sample image could come from either

the Animal category set (Cat or Dog) or from the Car category

set (Sports Car or Sedan). Test images, to which the monkeys

determined whether the sample image was a category match

or nonmatch, always came from the same category set as the

sample image so that both category sets remained independent.

We then examined how PFC neurons represented these

multiple, independent categories to determine if they function

as category generalists or category specialists.
RESULTS

Behavior
Both monkeys were proficient on the categorization task

(Figures 2A and 2B). They correctly categorized images of one

category as belonging to that category on most of the trials

(>80% correct), while seldom incorrectly classifying images

that were on the opposite side of the category boundary. If errors

were made, these were usually on the morphs closest to the

category boundary (i.e., those images made with 60% of one

category and 40% of the opposite category). For both category

sets, we saw the behavioral hallmark of perceptual categoriza-

tion: a much greater distinction between than within categories,

with a sharp change in behavior across the category boundary.

While both monkeys easily categorized images from both cate-

gory sets (Animals and Cars), slightly more errors were made

on the Car images than the Animal images, suggesting that

the Car set was more difficult (t test, p < 0.01). This was also

suggested by the significantly shorter behavioral reaction times

for the Animal images than for Car images (mean reaction times

for match trials, monkey Ti: Animals = 242 ms, Cars = 278 ms,

t test, p < 0.01; monkey Lu: Animals = 281 ms, Cars = 378 ms,

t test, p < 0.01).

Neural Activity to Independent Category Sets
PFC Neurons Are Sensitive to Category Membership

We focused on neural activity during the sample and delay inter-

vals, which is when the monkeys had to categorize the sample

stimulus and retain that information in short-term memory. We

first identified a population of neurons with potential neural

correlates of the category distinction seen in the monkeys’

behavior. A t test was performed on each neuron’s firing rate

to all sample images from one category versus all images from

the other (i.e., all Cat versus Dog images or all Sports Car versus

Sedan images). We will refer to these neurons as ‘‘category

sensitive’’ because the t test identifies neurons that could poten-

tially show category effects (in the next section, we will show that

they do). Table 1 shows the breakdown of neuronal sensitivity to

the Animal and Car category distinctions by trial interval (sample

and delay). Over 1/3 of randomly recorded neurons in the lateral

PFC showed a significant difference in the sample and/or delay

intervals for one category set or the other (Animals = 37%, 167 of

455; Cars = 38%, 173 of 455). Of these category sensitive

neurons (236 in total), almost half showed a significant difference

in average activity for both category distinctions (Animals and

Cars, 44%, 104 of 236). Most of these ‘‘multitasking’’ neurons

(84/104 or 81%) showed significant category sensitivity for

both category schemes during the same task intervals. That is,

at least one interval overlapped such that a neuron was selective

for both category schemes (on different trials) during that

interval. Only about a quarter of the category sensitive neurons

showed significant differences for either one of the category

schemes but not for the other (Animals = 27%, 63 of 236;

Cars = 29%, 69 of 236). These neurons were category ‘‘special-

ists’’ (i.e., they categorized Animals only or Cars only). These

results are summarized in Table 2. We next present analyses

to show that the population of neurons identified as category

sensitive did indeed show the hallmarks of perceptual
Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc. 797
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Figure 2. Behavior and Single Neuron

Example

(A and B) Performance of both monkeys on the

delayed match to category task with multiple,

independent category distinctions across all

recording sessions. Monkeys were able to catego-

rize both Animals and Cars exceptionally well and

displayed a hallmark step function in behavior at

the category boundary. Error bars represent

standard error of the mean.

(C) A single PFC neuron showed distinct firing for

stimuli of one category (e.g., Sedans) versus the

other category (e.g., Sports Cars). Note how all

morph percentages on either side of the category

boundary (50%) grouped together (e.g., blue

versus red lines), despite the fact that sample

images near the boundary line (60%/40%, dark

lines) were closer in physical similarity. Thus, this

neuron responded to the category membership

of the stimuli rather than their visual properties.

This individual PFC neuron multitasked, categoriz-

ing both Animals (Cats versus Dogs) and Cars

(Sedans versus Sports Cars) during the late delay

interval.
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categories. As in our previous studies, there was no obvious

clustering or organization of neurons with category effects

across our recording sites.

PFC Neural Activity Shows the Hallmarks

of Perceptual Categorization

A multitasking neuron that was significantly category sensitive

(t test, as above) for both category schemes is shown in Fig-

ure 2C. When activity was sorted by the morph level of the

sample images, firing rates grouped together based on the cate-

gory of the images rather than their physical appearance. That is,

this neuron’s firing rate (especially near the end of the memory

delay), clusters according to category membership and there

is a sharp difference in firing rate between images right across

the category boundary (60%–40% images, dark lines) even

though those images are relatively similar in appearance. Note

how this category selectivity occurs for both category sets, dis-

tinguishing Cats from Dogs as well as Sedans from Sports Cars.

The same effect can be seen across the population of cate-

gory sensitive neurons (Figure 3). The average activity for

neurons that showed category sensitivity (according to a t test,

as above) across a given interval (sample, delay, or test intervals)

is shown in each panel of Figure 3 (except for the fixation interval

which shows the average activity of neurons that were category

sensitive during either the sample, delay, or test intervals). A

preferred category was defined as the category having the

higher firing rate for each interval. This includes all neurons

that had a statistically significant difference in firing rate between
798 Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc.
categories. ‘‘Preferred’’ was just an arbi-

trary designation; individual PFC neurons

could respond with either an enhanced or

suppressed firing rate. During the

sample, delay, and test periods firing

rates are significantly different across

the category boundary, but not different
within categories (i.e., all bars are statistically similar on either

side of the boundary line but different across it, t tests, p <

0.05). During fixation (baseline), there is no significant difference

in firing across trials of the preferred versus nonpreferred

category—this shows that selecting a preferred category by

choosing the category set with the highest firing rate during

each interval does not artificially induce a category effect.

Thus, the neural activity of the PFC population shows the same

sharp transition across a discrete category boundary as was

seen in the behavior. The Car category distinction elicited a

significantly greater difference in activity in averaged normalized

firing rates during the sample and test intervals (t tests, fixation:

p = 0.37, sample: p = 0.02, delay: p = 0.09, test: p = 0.005). This

may be related to the monkeys finding the Cars distinction a little

more difficult (see above). This is consistent with observations of

sharper neural tuning and higher firing rates in the area V4 with

increased difficulty in visual discriminations (Spitzer et al., 1988).

Next, we took our analysis one step further and compared

average population activity for individual sample images by

computing a correlation matrix (Freedman and Miller, 2008;

Hegdé and Van Essen, 2006; Roy et al., 2010). The correlation

values reflect the degree of similarity of the level of neural activity

between all possible pairs of images. Correlations were com-

puted between the activities of all category-sensitive neurons

(t test, as above) to all possible pairs of sample images; the color

of each square indicates the correlation coefficient (r) for a single

pairing. To simplify the presentation of the results, Figure 4



Table 1.

Intervals Where

Category Sensitive

Number

of Neurons

Animals Cars

Sample Delay Sample Delay

Multisensitive

(Generalists)

104

Intervals overlap 84

1 1 1 1 13

1 1 1 0 13

1 1 0 1 8

1 0 1 1 11

0 1 1 1 19

1 0 1 0 1

0 1 0 1 19

Intervals do not overlap 20

1 0 0 1 5

0 1 1 0 15

Animal-Only Sensitive

(Specialists)

63

1 0 0 0 15

0 1 0 0 39

1 1 0 0 9

Car-Only Sensitive

(Specialists)

69

0 0 1 0 17

0 0 0 1 37

0 0 1 1 15

Nonsensitive 219

0 0 0 0 219

Total 455

Table 1 groups neurons based on whether each neuron was category

sensitive (see text) in the sample and/or delay intervals (t test at p <

0.01). Each row of the table specifies whether neurons showed significant

category sensitivity by category set and task interval (1 = significant for that

category set/interval, 0 = nonsignificant for that category set/interval). For

example, the first row identifies that 13 neurons were sensitive for all four

tested category set/interval combinations (i.e., a 1 is shown for Animals/

Sample, Animals/Delay, Cars/Sample, and Cars/Delay). The table is sub-

divided to show neurons that were: category sensitive to both category

distinctions in the same or different intervals, sensitive to the Animal

distinction only, Car sensitive only, or nonsensitive. Multisensitive neurons

were also distinguished based on whether neuronal selectivity for Animals

and Cars overlapped (was significant in the same interval).

Table 2. Independent Categories (Animals versus Cars)

Animal Sensitive Not Animal Sensitive Total

Car sensitive 104 69 173

Not car sensitive 63 219 282

Total 167 288 455

Table 2 lists the count of all recorded neurons (455) based on whether

each neuron was category sensitive (t tests, p < 0.01) for both the Animal

(Cats versus Dogs) and Car (Sedans versus Sports cars) category sets,

only one set or the other, or neither set. The last row and column show

the sums and specify neuronal selectivity for one category set indepen-

dent of selectivity for the alternative category set.
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shows data from the delay interval (when monkeys had to

remember the sample category). Identical effects were also

seen during the sample and test intervals (see Figure S1 avail-

able online). The correlation matrix is organized with all the

images lined up along each axis in the same order for a given

category scheme such that images 1–10 were always from one

category (e.g., ‘‘Cats’’) and images 11–20 were always from

the other category (e.g., ‘‘Dogs’’)—this arrangement is depicted

in the figure key. The results showed high correlations (warm

colors) when both images of a pair were from the same category
whereas negative correlations (cool colors) were seen when

images were from different categories (Figures 4A and 4B).

Note the sharp difference between correlations across the cate-

gory boundary (between images 10 and 11), indicating the sharp

difference in activity to physically similar images that belong to

different categories. As expected, the highest correlations

were when the pairs of images were from the same category

and prototype, i.e., they were from the same category and

physically similar (see figure key). When noncategory sensitive

neurons were tested, no category effect was seen (Figure 4C).

The correlation matrices were tested for significance by

permutation tests. We first computed the actual difference in

average correlation between values computed from images of

the same category versus all values from images of different

categories. We did not use values from the same prototype

(see figure legend) in order to ensure that we were testing cate-

gory effects per se (i.e., we excluded same prototype images

because they also looked alike). A null distribution was then

computed by randomly shuffling these values (i.e., randomly as-

signing each values to either the ‘‘within’’ or ‘‘between’’ category

groups) and computing the difference for this randomized data.

We repeated this 10,000 times. The percentage of times the

theoretical difference exceeded the true difference was the

permuted p value. Identical results (i.e., the same groups were

significant/nonsignificant in all cases) were obtained by perform-

ing t tests across these groups. The resulting p values are shown

in Figure 4; they indicate significantly higher correlations of

activity to images within than between categories.

Individual PFC Neurons Multitask (Generalize)

and Encode Multiple Categories

The t test for category sensitivity (above) revealed that 44% of

PFC category-sensitive neurons were category multitaskers,

i.e., showed a significant difference in average activity to both

the Animal and Car category distinctions. This large degree of

neuronal overlap in category effects can be seen in the population

correlation matrices in Figure 4. Even when neurons were

selected solely based on their category sensitivity to the Animal

category distinction (Figure 4A, left panel; i.e., regardless of

whether or not they were sensitive to the Car category distinc-

tion), category effects could still be seen when the correlation

matrix was computed for these neurons using the Car distinction

(Figure 4A, right panel). Likewise, when we computed the corre-

lation matrix using neurons that showed significant category

sensitivity for Cars (Figure 4B, right panel), category effects

were still seen for the Animal category distinction (Figure 4B,
Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc. 799
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Level

Normalized neuronal firing of category sensitive

neurons sorted by the percentage of each

neuron’s preferred category that made up the

sample image. During fixation (baseline) no cate-

gory effect is present, but during the sample,

delay, and test periods there is a significant differ-

ence in firing across the category boundary (but

not within). The same hallmark step function as

seen in the monkeys’ behavior is seen in the neural

population activity. Error bars indicate standard

error of the mean. Asterisks indicate that bars

were significantly different (t tests, p < 0.05) from

each bar on the opposite side of the category

boundary. Bars on the same side of category

boundary were never significantly different.
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left panel). Therefore, a large percentage of PFC neurons must

have shown effects for both category schemes or else the not-

selected-for category distinction would not show an effect. We

further demonstrated this by recomputing the correlation

matrices, but this time by selecting neurons by whether they

were sensitive to both category sets (Animals and Cars, t tests

as above, both p < 0.01), sensitive for Animals but not Cars

(t test for Animals, p < 0.01; t test for Cars, p > 0.01), sensitive

for Cars but not Animals (t test for Cars, p < 0.01; t test for Animals,

p > 0.01), or sensitive to neither category (both t tests, p > 0.01;

Figure S2). In this case, category effects were seen only where

expected: Animal-only sensitive neurons only showed category

effects for Animals and not Cars, Car-only sensitive neurons

showed category effects for Cars and not Animals, etc.

(Figure S2). These results confirm the finding that PFC neurons

can multitask categories and, in addition, they demonstrate

that the category sensitivity t tests used to select neurons for

analysis faithfully identify category effects at the population level.

To further explore this multitasking as well as to examine the

temporal dynamics of category selectivity, we calculated the

information that each PFC neuron carried about each category

distinction as a function of time within the trial (Figure 5). Neural

information about a category distinction was quantified as the

area under the receiver operating characteristic (ROC) curve

for each category contrast (e.g., ‘‘Cat’’ versus ‘‘Dog’’). We

used rectified ROC values (indicating the level of category sensi-

tivity, but not which category was preferred). Higher ROC values

(approaching 1) indicate a larger degree of difference in activity

to sample images of the different categories (orange/white

colors) while lower ROC values (near 0.5) indicate no or weak

category sensitivity (black colors). In Figure 5A, each row corre-

sponds to a single neuron. For the left panel, all the neurons

identified as being significantly category sensitive for Animals
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were sorted by the time of maximum

ROC values (167 neurons, t test, as

above; Figure 5A, left panel, rows 1–167

below the dashed white line). The

neurons that did not show a significant

Cats versus Dogs sensitivity were

randomly sorted (Figure 5A, left panel,
rows 168–455 above the dashed white line). Note the variability

in the timing of category-related activity. Some neurons are cate-

gory sensitive only transiently (short orange bands), while others

maintain their selectivity over a long duration (long orange

bands). This selectivity can peak early in the sample period for

some neurons while other neurons have peaks of selectivity

ranging throughout the delay period and into the test interval.

The onset of category selectivity varied similarly. Note the great

deal of variability in the temporal dynamics of the category

signals across neurons. In general, the highest ROC values for

the Cat versus Dog category of the sample stimulus were around

the time of the test stimulus, when the category match/non-

match decision had to be made. This is consistent with prior

reports (Freedman et al., 2002).

To determine the degree of overlap of category effects in

individual neurons, we next plotted the ROC values for the Car

category distinction (Figure 5A, right), but retaining their sorting

by the time of the maximum ROC for the Animal category distinc-

tion. In other words, corresponding rows in the right and left

panels of Figure 5A plot ROC values for the same neuron. With

the neurons aligned, we see that the majority of the highest

ROC values for the Car distinction (bright orange color) in the

right panel is also in the lower third of the graph (below the

dashed line), indicating that many of the neurons that distin-

guished between Cats and Dogs also distinguished between

Sedans and Sports Cars. There are some neurons with high

Car ROC values in the upper two thirds of the plot (i.e., neurons

that were only sensitive to the Car distinction, but not the Animal

distinction), but they are fewer in number than the neurons that

showed relatively high ROC values for both distinctions. Interest-

ingly, the same neurons often showed markedly different time

courses of category effects for Animals and for Cars. Note that

while the Animal ROCs are ordered according to the time of
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Figure 4. Category Selectivity across All Images

Correlation value (r) were computed for all neurons’ mean

responses to all possible pairings of sample images from the

same category set (images 1–20, either Animals or Cars).

Figure key: correlation values were then used to define the

color of each square in a matrix representing these image pair-

ings. The matrix was arranged such that images 1–10 came

from one category (e.g., ‘‘Sports Cars’’) and images 11–20

came from the opposite category (e.g., ‘‘Sedans’’). The matrix

was further subdivided such that every five images came from

the same prototype.

(A) The average activity of PFC Animal sensitive neurons to

images from the same category was highly correlated

(similar)—as seen in the warm-colored squares, whereas

correlations to images from different categories was nega-

tive—deep blue squares. This was true for both the Animal

category distinction (left panel) as well as for the Car category

distinction (right panel), despite the fact that Car sensitivity

was not a factor in selecting the neurons. Thus, Animal sensi-

tive neurons multitask and also convey information about the

Car category.

(B) Car sensitive neurons display strong selectivity to the Car

category distinction as well as sensitivity to the Animal cate-

gory distinction. Again, activity is strongest for the expected

distinction (Cars), but clearly evident for the nonselected

distinction (Animals) due to multitasking neurons.

(C) Noncategory sensitive neurons had low correlation

between the sample images and these correlations were

nonsignificant across categories (between images 1 and 10

and images 11 and 20). p values indicate significance between

categories as determined by permutation tests (see text).

See also Figures S1 and S2.
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max ROC, the same neurons show no such ordering for their Car

ROC values. A given neuron could show a short latency for one

category but long latency for the other category. A correlation

analysis confirmed that the time to max ROC was not signifi-

cantly correlated between the Animal and Car category distinc-

tions (r =�0.08, p = 0.41), indicating that the temporal dynamics

for the two categories schemes were unrelated.

Figure 5B shows the same comparison, only this time the

neurons are sorted according to the peak ROC value for the
Neuron
Car category distinction. Car-sensitive neurons

(173 neurons, t test, as above) were sorted by

the time of the peak ROC below the dashed line

of the right panel (rows 1–173); those that were

not significantly Car-sensitive were randomly

sorted, as above (rows 174–455; Figure 5B, right

panel). The left panel of Figure 5B displays the

ROC values of the same neurons as in the right

panel, but for the Animal category distinction

(sorted according to the maximum ROC of the

Car distinction). Again, we see the majority of

higher ROC values (orange color) is in the bottom

third of each graph, confirming the large number

of PFC neurons that reflected both the Animal

and Car category distinctions.

Is the likelihood of a PFC neuron being a category

multitasker higher than expected by chance? To

address this question, we tested the null hypoth-
esis that a neuron’s category sensitivity to either category

distinction had no effect on whether it was also category sensi-

tive for the alternate category scheme. A chi-square analysis

indicated that neural selectivity for one category scheme is not

independent of selectivity for the other (c2 = 65.86, df = 1, p <

0.01). In other words, if a neuron was sensitive for one of the

independent categories, there was a greater probability than

expected by chance that it would also be sensitive to the

second category scheme. Thus, PFC neurons that participate
66, 796–807, June 10, 2010 ª2010 Elsevier Inc. 801
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Figure 5. ROCs for the Recorded PFC Population

(A) ROC values for each of the recorded 455 PFC neurons

are shown, with the same neuron depicted in the same row

on the left and right panels. Bright orange colors indicate

high category sensitivity. Neurons identified previously as

sensitive to the Cats versus Dogs category distinction (via

t test) are sorted on max ROC (left panel, below the dashed

white line). The same neurons have the highest ROC values

for the Sports Cars versus Sedans category distinction (right

panel).

(B) Data as in (A) now realigned on the max ROC for Car sensi-

tive neurons. Again, the majority of selectivity for both category

distinctions is in the lower portion of the panels below the

dashed white line, even though the Animal ROCs are aligned

to match the Car sensitivity. Thus, the majority of PFC category

sensitive neurons multitask and encode both category distinc-

tions.

See also Figure S3.
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in categorization have a greater than chance probability of

participating in multiple category schemes.

Category Multitasking Neurons Have the Strongest

Category Sensitivity

To compare the strength of category selectivity of individual

neurons across category distinctions, we plotted for each

neuron the ROC values for the Animal category distinction

against its ROC value for the Car category distinction (Figure 6).

Because of the great deal of variability in temporal dynamics of

category effects across individual PFC neurons (see Figure 5),

we used the mean ROC value computed across a 500 ms

window centered at the time of the maximum ROC from either

the sample or delay periods. We color coded the ROC values ac-

cording to whether the neurons were classified as category

sensitive to both categories, Animals only, Cars only, or neither

category (t tests, as above). We plotted nonrectified ROC values

ranging from 0 to 1 to capture the category preference of each

neuron. Values near 0.5 indicate low category sensitivity

whereas ROC values approaching 1 indicate greater activity

for either Cats or Sports Cars while ROC values approaching

0 indicate greater activity for Dogs or Sedans. As expected,
802 Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc.
category-sensitive neurons had higher mean

ROCs than nonsensitive neurons for both the

Animal and Car distinctions (t test, p < 0.01). Data

points were evenly distributed across the four

quadrants of the graph, indicating an equal

neuronal preference for all category combinations

(i.e., there was no significant difference in the

number of points in the quadrants, chi-square

test, c2 = 1.43, df = 1, p = 0.23). As expected, the

neurons that were identified by t test as Animal-

only sensitive spread more horizontally (they had

weak ROC values near 0.5 for the Car category

distinction and thus tended to cluster near 0.5

values for the Car distinction) and Car-only sensi-

tive neurons tended to be spread more vertically

(they had weak ROC values for the Animal category

distinction). However, note that the neurons that

were significantly sensitive to both category
distinctions were furthest from the center of the graph, indicating

that they tended to show the strongest category ROC values. We

confirmed that the neurons sensitive to both Animals and Cars

had higher ROC values than neurons sensitive to either Animals

or Cars alone by computing t tests on their ROC values for the

Animal distinction and for the Car distinction. In both cases,

the neurons sensitive to both category distinctions had higher

ROC values for each distinction than the neurons sensitive to

one or the other distinction only (p < 0.01). Thus, many PFC

neurons were sensitive to both category distinctions and they

showed the strongest category effects.

Category Match/Nonmatch Effects

To solve the task, monkeys had to determine whether the cate-

gory of the test stimulus matched that of the sample. This was

reflected in the activity of many PFC neurons: 190 of 455 neurons

(42%) showed a significant difference in activity to the test stim-

ulus depending on whether or not it was a category match or

non-match (t test, p < 0.01). Of these, 104 (55%) showed match

enhancement (a higher firing rate to match trials than nonmatch

trials), whereas 86 (45%) showed match suppression (a lower

firing rate to match trials than non-match trials). As with the
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Mean ROC values for all recorded neurons to both category distinctions. Data

points are color coded based on significant category sensitivity via t test.

Values closer to the origin indicate weaker category sensitivity for the given

distinction. Data points were equally distributed in all four quadrants, indi-

cating equal neuronal preference for all categories. Data points furthest from

the origin in all four directions were from those multitasking neurons sensitive

to both the Animal and Car category schemes (yellow circles).
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category information, the temporal dynamics of the match

versus nonmatch information varied across neurons (Figure S3).

DISCUSSION

We recorded from lateral PFC neural activity while monkeys

randomly categorized images from two independent category

sets (Animals and Cars). We found that many PFC neurons

were sensitive to both category distinctions and, indeed, they

tended to be the neurons with the strongest category sensitivity.

These results suggest that PFC neurons can ‘‘multitask’’ inde-

pendent categories. This adaptability allows the brain to reutilize

the same pool of neurons for different tasks. Without it, storage

capacity might be severely limited.

Does this mean that prefrontal neurons always multitask? It

might depend on cognitive demands. Our lab (Roy et al., 2010)

recently trained two monkeys to flexibly recategorize the same

images under two different schemes, a situation analogous to

categorizing an airplane as either a ‘‘flying object’’ or a ‘‘method

of transportation.’’ Monkeys categorized the same Animal stimuli

under two orthogonal category schemes using identical proce-

dures to those used in our study. One scheme divided the image

set into Cat-like and Dog-like morphs (Animals, the same

scheme as used above and shown in Figure 1B and Figure 7A)

while the other scheme grouped together different pairs of Cat

and Dog prototypes to form a new animal category set (termed
‘‘Animals 2’’ in Figure 7B). Monkeys were trained to switch

between these two orthogonal, Animal category schemes

(a cue told them which scheme to follow on a given trial). Record-

ings were again made from the lateral PFC as in the present

study. In contrast to the present results, Roy et al. (2010) found

that there was little overlap in category representation across

neurons: only 24% of the neurons showed category sensitivity

for both category schemes versus the 44% found in our study

(Figure 7; Tables 2 and 3). This difference in the proportion of

the overlap of category representations between our studies

was significant (p = 0.0001; permutation tests, see Experimental

Procedures). This suggests that relatively few PFC neurons

multitask two different category distinctions when those cate-

gories are in conflict (i.e., when images from the same stimulus

set must be categorized in different ways and thus could be

confused with one another). By contrast, in our study the two

different category distinctions were independent and not in

conflict (i.e., they could not be confused). The larger degree of

separate representations of the two competing categories in

Roy et al. (2010) may allow for easier inhibition of the competing

category through distinct neural populations.

It is important to note that our results are opposite to those

predicted by a ‘‘sensory’’ or bottom-up driven view of neural

representation in the PFC. If the physical appearance of the

stimuli alone were determining how information is distributed

among PFC neurons, then we would expect the most overlap

in representation when the categories are competing (as in

Roy et al., 2010) because the exact same images are being

categorized. Instead, we found a greater degree of overlap

when monkeys were categorizing independent image sets that

were physically distinct from each other. Thus, unlike sensory

cortex, especially primary sensory cortex, it appears that cogni-

tive demands of the task are more influential to how information

is distributed across PFC neurons than bottom-up sensory

inputs.

Our observation of category multitasking in the PFC also

stands in contrast to that seen in the medial temporal lobe

(MTL) of humans, which contains neurons that respond only to

images from a single category, such as animals (Kreiman et al.,

2000) or ‘‘Jennifer Aniston’’ (Quiroga et al., 2005). MTL coding

is sparse; relatively few neurons seem to represent a given cate-

gory and single MTL neurons seem highly selective for only one

category. By contrast, we found that in the monkey PFC many

neurons are engaged during categorization and many of them

are category multitaskers. This could be due to the different

functions of the PFC and MTL. Sparse encoding in the MTL

may be better suited for long term memory storage whereas

multitasking may be better suited for the cognitive flexibility for

which the PFC is critical.

A variety of studies point to a central role of the PFC in catego-

rization. The human PFC is activated during categorization (Aron

et al., 2006; Vogels et al., 2002). When new categories are

learned via trial and error, they may be acquired via interactions

in corticostriatal loops between the PFC and basal ganglia

(Buschman and Miller, 2008; Seger, 2006, 2008; Seger et al.,

2010). The PFC may also orchestrate communication between

the basal ganglia (BG) and the medial temporal lobe (MTL) during

category learning (Poldrack and Rodriguez, 2004). Further, there
Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc. 803
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Figure 7. Multitasking of Neurons for Independent and Competing Category Schemes

(A) In the current study, when monkeys categorized two independent category sets (Animals and Cars), 44% of category sensitive neurons showed category

effects for both category sets.

(B) This is in contrast to another study from our laboratory (Roy et al., 2010) in which the same images were categorized under two different (orthogonal) category

sets: Animals (‘‘Cats versus Dogs’’) or Animals 2 (a new category distinction based on two unique combinations of a cat and dog prototype). The Cat and Dog

categories were the same used in this study. In the Roy et al. (2010) experiment with orthogonal category sets, fewer PFC neurons (24%) showed category

sensitivity for both category distinctions.
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seem to be contrasts between the PFC and the inferior temporal

cortex (ITC), which provides the PFC with highly processed

visual information. While ITC neurons reflect visual category

membership (Kiani et al., 2007; Vogels, 1999a, 1999b), category

effects are stronger in the PFC because the ITC has more

detailed visual information (Freedman and Miller, 2008;

Freedman et al., 2003; Meyers et al., 2008). Indeed, ITC neurons

have been shown to have altered shape tuning properties after

category learning (De Baene et al., 2008; Freedman et al.,
Table 3. Related/Competing Categories (Animals versus Animals

2) from Roy et al. (2010)

Animal Sensitive Not Animal Sensitive Total

Animal 2 sensitive 49 67 116

Not Animal 2 sensitive 90 330 420

Total 139 397 536

Table 3 lists how many of the 536 neurons reported by Roy et al. (2010)

were category sensitive (t tests, p < 0.01) for both the Animal and Animal

2 category sets, only one set or the other, or neither set. The last row and

column show the sums and specify neuronal selectivity for one category

set independent of selectivity for the alternative category set. The Animal

category set was same ‘‘Cat’’ versus ‘‘Dog’’ distinction used in this study

while the Animal 2 category set refers to an alternate, orthogonal grouping

of the same images into two different categories (see ‘‘Animals 2’’ in

Figure 7B and Roy et al., 2010).
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2006; Jiang et al., 2007) and emphasize the visual features that

are diagnostic of categories (Sigala and Logothetis, 2002), rather

than explicit representations of category per se.

We have shown that PFC neurons generalize to multiple visual

categories when these categories are independent and not in

conflict. If PFC neurons are true ‘‘cognitive generalists’’ they

might be able to categorize stimuli across multiple modalities.

The ventrolateral PFC has been shown to be engaged by

auditory categorization (Cohen et al., 2006; Gifford et al., 2005;

Lee et al., 2009; Russ et al., 2007) and have neural correlates

of somatosensory (Machens et al., 2005; Romo et al., 1999)

and gustatory (Lara et al., 2009) working memory. But it remains

to be seen whether category multimodality is apparent within

individual PFC neurons.

In summary, our results support the idea that PFC neurons

can function as cognitive generalists because more category

sensitive neurons in this study multitasked and distinguished

between Cat versus Dog as well as Sports Car versus Sedan

than categorized either distinction alone. However, the fact

that category representations in the PFC neurons are more inde-

pendent of one another when multiple category distinctions are

not independent suggests there are times when relative special-

ization is advantageous. We suggest that specialization may

occur with high cognitive demands, such as when categories

are in conflict. Prefrontal cortex neurons may multitask by

default, but may make representations more independent
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when there are task demands for which this is advantageous. In

other words, harder problems may require more specialized

neural architecture.

EXPERIMENTAL PROCEDURES

Subjects

Data were collected from two macaque monkeys (Macaca mulatta) that

were cared for in accordance with National Institutes of Health guidelines

and the policies of the Massachusetts Institute of Technology Committee on

Animal Care. One monkey, male ‘‘ti,’’ was trained from naivety for this study.

He first learned to perform the delayed match to category task with the Animals

(Cat versus Dog) category set, then subsequently learned to perform the same

task with the Car morphs. The second monkey, female ‘‘lu,’’ has participated in

several prior categorization studies. She also first learned the Animal category

set, but as part of a more difficult task where the category boundary was

flexible and cued at the beginning of each trial (Roy et al., 2010). She subse-

quently learned the Car categorization.

Stimuli

Two Independent Category Sets

Stimuli were from one of two independent category sets (Figure 1B). Each set

consisted of four prototype images (two prototypes from each category) and

morphs between those prototypes (Figure 1A). The first category set (Animals)

consisted of Cats versus Dogs. The second category set (Cars) consisted of

Sports Cars versus Sedans.

Stimuli Are Morphs between Prototypes

Numerous morph images were generated by varying the percent composition

of the prototype images using the vector differences between corresponding

points (Beymer and Poggio, 1996; Freedman et al., 2001, 2002; Jiang et al.,

2007; Shelton, 2000). Stimuli from different categories differed along multiple

features and were smoothly morphed (i.e., without sudden appearance of any

feature). Each category set (Animals and Cars) had a fixed category boundary

at 50%. Thus, an image was considered a member of a category if it contained

more than a 50% contribution from a prototype in that category. During

training of both category schemes, the image set consisted of hundreds of

images generated from combinations of the four prototypes. For the recording

sessions, we generated 20 images from six levels of combinations (100:0,

80:20, 60:40, 40:60, 20:80, and 0:100) of each pair of prototypes across the

category boundary to be used as the sample images. The prototype images

of the four morph lines that span between the prototypes across the category

boundary are shown in Figure 1B, with an example of all images along a single

morph line depicted in Figure 1A. All images within a category set had identical

color, shading, orientation, and scale. This process was repeated for both

category sets, so that the final recording set contained 40 possible sample

images which were repeatedly presented to obtain sufficient statistical power

for neuronal analysis. In order to prevent memorization during the recording

sessions, these sample images were randomly paired with hundreds of test

images that were a minimum of 80% morph from one category. These sampl-

test pairs were randomly selected and were changed daily.

Behavioral Task

Monkeys performed a delayed match to category test (Figure 1C). They

initiated the trial by grabbing a response bar. This caused the onset of a white

fixation square. Monkeys were required to maintain fixation within 2 degrees

of this square during the course of the entire trial. After a 1000 ms period of

fixation, one of 40 possible sample images (20 from either category set) was

presented for 600 ms. This was followed by a 1000 ms delay period where

the monkeys held in mind the category of the sample image. Subsequently,

a test image was presented. This test image could be a category match

(an image from the same category as the sample) or a category nonmatch

(an image from the opposite category as the sample). For example, if the

sample image was a cat (any image >50% Cat), a match trial would have

a test image that was also a Cat image whereas a non-match trial would

have a Dog image during the test phase. On match trials, monkeys were

required to release the bar within 600 ms of the test image presentation to indi-
cate the category match. On nonmatch trials, monkeys were to continue

holding the bar and after 600 ms the test image turned off. This latter case

was followed by a second delay period (600 ms) and the subsequent presen-

tation of a second test image that was always a category match to the sample

image. Thus, monkeys were required to make a response on every trial and

could receive a reward on every trial. Note how the motor response is dissoci-

ated from the category of the sample stimulus (i.e., there is no one-to-one

mapping for sample category and motor response). Reward amounts were

kept constant throughout each recording session. Trials of each category

set were randomly interleaved and occurred at similar frequency, as did trials

of each type (i.e., match versus nonmatch). Test stimuli were always from the

same category set as the sample (e.g., if the sample was an Animal the test

stimulus was also an Animal), but could either be a category match (e.g.,

Cat-Cat) or a category nonmatch (e.g., Cat-Dog).

Electrophysiological Recordings

Eye movements were recording using an infrared eye tracking system (Iscan,

Burlington, MA) at a sampling rate of 240 Hz. Neural recordings were made

using individual, epoxy-coated tungsten electrodes (FHC Inc., Bowdoin,

ME). Up to 16 of these electrodes were lowered through the dura each day

using in-house screw microdrives. Electrodes were either driven indepen-

dently or in pairs. Recording wells were positioned over the lateral PFC.

Electrodes were lowered into the cortical cell layer (i.e., when neurons or

hash were easily identifiable) and allowed to settle. Electrodes were adjusted

to obtain neurons on one or both electrodes on each microdrive, but no

prescreening of neurons took place. This resulted in an unbiased sample of

lateral PFC neurons, rather than simply those neurons that may be task related.

Waveforms were amplified, digitized and then stored for offline sorting.

Principal components analysis was subsequently used to sort the waveforms

into individual neurons (Offline Sorter, Plexon Inc., Dallas, TX). We included all

well isolated neurons that were held for a minimum of 500 correct trials in our

analysis. This resulted in a total of 455 lateral prefrontal cortex neurons

(358 from monkey ‘‘ti’’ and 97 from monkey ‘‘lu’’).

Data Analysis

Analysis Intervals

Data were analyzed over three time intervals throughout the trial. The fixation

interval included the last 500 ms before the onset of the sample image. During

this time, the eyes were stable and no images were on the screen—this served

as a baseline measure of neural activity. The sample interval was analyzed

from 100 to 600 ms after sample onset and represented the time when the

sample image was present (adjusted for the visual delay to the PFC). The delay

interval was analyzed from 300 to 1100 ms after the sample offset and

captured the period when no image was physically present on the screen

but the monkey was remembering the category (presumably) of the sample

image (again adjusted for the PFC neural delay). The use of these analysis

intervals provided a baseline and two periods when the only information

present was the sample image (and its category). The timing of these analysis

intervals is consistent with our previous studies (Freedman et al., 2001, 2002,

2003; Roy et al., 2010). For some analyses, we also included the test interval

defined as a 500 ms window starting at the time of test stimulus onset.

Normalization

For Figure 3, neural activity was normalized by first subtracting from the

measured firing rate the minimum firing rate during that interval and then

dividing by the difference of the maximum and minimum firing rates. This

method maximized the dynamic range of each neuron in each time interval

and is consistent with that used in our previous studies (Freedman et al.,

2001, 2002, 2003). All results were similar when firing rate was replaced with

number of spikes.

Permutation Tests

In this experiment with two independent category sets and a similar experi-

ment with related (competing) category sets (Roy et al., 2010), we randomly

sampled lateral PFC neurons and tested their category selectivity. In both

cases, we found neurons in the PFC selective for one or multiple category

sets. We then used permutation tests to examine if the number of neurons

selective for both category sets was the same or different across experiments.

We first calculated the actual difference in the percentage of selective neurons
Neuron 66, 796–807, June 10, 2010 ª2010 Elsevier Inc. 805



Neuron

Multiple Categories in the Prefrontal Cortex
in the two experiments. Then we created a distribution containing all neurons

recorded in both experiments. For each permutation, we shuffled this distribu-

tion, randomly assigned each neuron to an ‘‘experiment,’’ and computed

a theoretical difference in the percentage of selective neurons. We repeated

this 10,000 times to estimate the distribution of population differences under

the null hypothesis that there is no difference between the two experiments.

A p value was then determined by summing the number of theoretical differ-

ences that were less than the actual percentage difference, dividing by the

number of repeats, and subtracting this value from one. We used a similar

procedure to compute p values for the correlation plots, again repeated

10,000 times.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and can be found with this

article online at doi:10.1016/j.neuron.2010.05.005.
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